Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Sep 08 2022 08:44:57
%S 1,1,2,14,194,4402,147552,6838764,418389078,32639603798,3161107700156,
%T 372023906062756,52280302234036252,8645773770675973804,
%U 1661888635268695003484,367390786215560629372920,92552610850186107484661670,26356304249588730696338349990
%N a(n) = Sum_{k=0..n} Stirling1(n,k)^2.
%H Vincenzo Librandi and Vaclav Kotesovec, <a href="/A047796/b047796.txt">Table of n, a(n) for n = 0..250</a> (terms 0..41 from Vincenzo Librandi)
%p seq(add(stirling1(n, k)^2, k = 0..n), n = 0..20); # _G. C. Greubel_, Aug 07 2019
%t Table[Sum[StirlingS1[n,k]^2,{k,0,n}],{n,0,20}] (* _Emanuele Munarini_, Jul 04 2011 *)
%o (Maxima) makelist(sum(stirling1(n,k)^2,k,0,n),n,0,24); \\ _Emanuele Munarini_, Jul 04 2011
%o (PARI) a(n) = sum(k=0, n, stirling(n, k, 1)^2); \\ _Michel Marcus_, Mar 26 2016
%o (Magma) [(&+[StirlingFirst(n,k)^2: k in [0..n]]): n in [0..10]]; // _G. C. Greubel_, Aug 07 2019
%o (Sage) [sum(stirling_number1(n,k)^2 for k in (0..n)) for n in (0..20)] # _G. C. Greubel_, Aug 07 2019
%o (GAP) List([0..20], n-> Sum([0..n], k-> Stirling1(n,k)^2 )); # _G. C. Greubel_, Aug 07 2019
%Y Cf. A000275, A047797, A342111.
%K nonn
%O 0,3
%A _N. J. A. Sloane_