login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358368
a(n) = Sum_{k=0..n} C(n)^2 * binomial(n + k, k), where C(n) is the n-th Catalan number.
2
1, 3, 40, 875, 24696, 814968, 29899584, 1184303835, 49711519000, 2183727606632, 99503164453056, 4672502764108088, 225011739846443200, 11070183993903000000, 554749060302467136000, 28247778810831290434875, 1458696209123375067879000, 76266400563425844598365000
OFFSET
0,2
LINKS
FORMULA
a(n) = (2*n + 1) * C(n)^3.
a(n) = (64*n^3 - 32*n^2 - 16*n + 8)*a(n - 1) / (n + 1)^3, for n >= 1.
a(n) = [x^n] hypergeom([1/2, -2*n - 1, -2*n], [2, 2], 4*x) (see A367023). - Peter Luschny, Nov 07 2023
MAPLE
C := n -> binomial(2*n, n)/(n + 1):
A358368 := n -> add(C(n)^2*binomial(n+k, k), k = 0..n): seq(A358368(n), n = 0..17);
# Alternative:
a := proc(n) option remember; if n = 0 then 1 else
(64*n^3 - 32*n^2 - 16*n + 8)*a(n - 1) / (n + 1)^3 fi end: seq(a(n), n = 0..17);
# Third form:
p := n -> hypergeom([1/2, -2*n - 1, -2*n], [2, 2], 4*x):
a := n -> coeff(simplify(p(n)), x, n): seq(a(n), n = 0..17);
MATHEMATICA
Array[(2*#+1)*CatalanNumber[#]^3 &, 20, 0] (* Paolo Xausa, Feb 19 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 16 2022
STATUS
approved