The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A358369 Euler transform of 2^floor(n/2), (A016116). 6
 1, 1, 3, 5, 12, 20, 43, 73, 146, 250, 475, 813, 1499, 2555, 4592, 7800, 13761, 23253, 40421, 67963, 116723, 195291, 332026, 552882, 932023, 1544943, 2585243, 4267081, 7094593, 11662769, 19281018, 31575874, 51937608, 84753396, 138772038, 225693778, 368017636 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..36. MAPLE BinaryRecurrenceSequence := proc(b, c, u0:=0, u1:=1) local u; u := proc(n) option remember; if n < 2 then return [u0, u1][n + 1] fi; b*u(n - 1) + c*u(n - 2) end; u end: EulerTransform := proc(a) local b; b := proc(n) option remember; if n = 0 then return 1 fi; add(add(d * a(d), d = NumberTheory:-Divisors(j)) * b(n-j), j = 1..n) / n end; b end: a := EulerTransform(BinaryRecurrenceSequence(0, 2, 1)): seq(a(n), n=0..36); PROG (Sage) # uses[EulerTransform from A166861] b = BinaryRecurrenceSequence(0, 2, 1) a = EulerTransform(b) print([a(n) for n in range(37)]) (Python) from typing import Callable from functools import cache from sympy import divisors def BinaryRecurrenceSequence(b:int, c:int, u0:int=0, u1:int=1) -> Callable: @cache def u(n: int) -> int: if n < 2: return [u0, u1][n] return b * u(n - 1) + c * u(n - 2) return u def EulerTransform(a: Callable) -> Callable: @cache def b(n: int) -> int: if n == 0: return 1 s = sum(sum(d * a(d) for d in divisors(j)) * b(n - j) for j in range(1, n + 1)) return s // n return b b = BinaryRecurrenceSequence(0, 2, 1) a = EulerTransform(b) print([a(n) for n in range(37)]) CROSSREFS Cf. A002513, A016116. Sequences that can be represented as a EulerTransform(BinaryRecurrenceSequence()) include A000009, A000041, A000712, A001970, A002513, A010054, A015128, A022567, A034691, A111317, A111335, A117410, A156224, A166861, A200544, A261031, A261329, A358449. Sequence in context: A245939 A089292 A309702 * A143360 A234005 A263346 Adjacent sequences: A358366 A358367 A358368 * A358370 A358371 A358372 KEYWORD nonn AUTHOR Peter Luschny, Nov 17 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 01:00 EST 2023. Contains 367565 sequences. (Running on oeis4.)