OFFSET
0,3
COMMENTS
Number of 2-dimensional partitions of n where each row is non-squashing.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..5000
N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, arXiv:math/0312418 [math.CO], 2003.
N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
EXAMPLE
a(4) = 12:
4.31.3.22.2.211.21.2..2.11.11.1
.....1....2.....1..11.1.11.1..1
......................1....1..1
..............................1
211 and 1111 for example are excluded because they would squash.
MATHEMATICA
maxm = 38;
b[0] = b[1] = 1; b[n_] := b[n] = If[OddQ[n], b[n-1], b[n-1] + b[n/2]];
Product[1/(1-x^m)^b[m], {m, 1, maxm}] + O[x]^maxm // CoefficientList[#, x]&
(* Jean-François Alcover, Oct 02 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 24 2003
STATUS
approved