login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089292
G.f.: Product_{m>=1} 1/(1-x^m)^A018819(m).
5
1, 1, 3, 5, 12, 20, 41, 69, 132, 222, 399, 665, 1156, 1904, 3212, 5234, 8645, 13925, 22596, 36008, 57590, 90862, 143508, 224316, 350505, 543159, 840623, 1292317, 1983094, 3026178, 4608061, 6983663, 10559800, 15901698, 23889722, 35760786, 53405395, 79498207
OFFSET
0,3
COMMENTS
Number of 2-dimensional partitions of n where each row is non-squashing.
LINKS
N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, arXiv:math/0312418 [math.CO], 2003.
N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
EXAMPLE
a(4) = 12:
4.31.3.22.2.211.21.2..2.11.11.1
.....1....2.....1..11.1.11.1..1
......................1....1..1
..............................1
211 and 1111 for example are excluded because they would squash.
MATHEMATICA
maxm = 38;
b[0] = b[1] = 1; b[n_] := b[n] = If[OddQ[n], b[n-1], b[n-1] + b[n/2]];
Product[1/(1-x^m)^b[m], {m, 1, maxm}] + O[x]^maxm // CoefficientList[#, x]&
(* Jean-François Alcover, Oct 02 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 24 2003
STATUS
approved