login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358367
a(n) = 8^n * binomial(n * 3/2, n).
2
1, 12, 192, 3360, 61440, 1153152, 22020096, 425677824, 8304721920, 163176499200, 3224446697472, 64012657213440, 1275708366127104, 25506581874278400, 511404848311173120, 10278423735852072960, 207016682596362878976, 4177272328882468945920, 84430333294202899660800
OFFSET
0,2
LINKS
FORMULA
a(n) ~ c*2^(2*n)*3^(3*n/2)/sqrt(n) where c = sqrt(3/(2*Pi)). - Stefano Spezia, Nov 14 2022
MAPLE
seq(8^n * binomial(n*3/2, n), n = 0..18);
MATHEMATICA
A358367[n_] := 8^n*Binomial[3/2*n, n];
Array[A358367, 20, 0] (* Paolo Xausa, Jan 31 2024 *)
PROG
(Python)
from sympy import binomial, S
def A358367(n): return (1<<n*3)*binomial(3*S.Half*n, n) # Chai Wah Wu, Nov 14 2022
(PARI) a(n) = 8^n * binomial(n * 3/2, n); \\ Michel Marcus, Nov 15 2022
CROSSREFS
Sequence in context: A086948 A230539 A230750 * A212596 A051620 A144347
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 14 2022
STATUS
approved