login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} C(n)^2 * binomial(n + k, k), where C(n) is the n-th Catalan number.
2

%I #11 Feb 19 2024 04:36:24

%S 1,3,40,875,24696,814968,29899584,1184303835,49711519000,

%T 2183727606632,99503164453056,4672502764108088,225011739846443200,

%U 11070183993903000000,554749060302467136000,28247778810831290434875,1458696209123375067879000,76266400563425844598365000

%N a(n) = Sum_{k=0..n} C(n)^2 * binomial(n + k, k), where C(n) is the n-th Catalan number.

%H Paolo Xausa, <a href="/A358368/b358368.txt">Table of n, a(n) for n = 0..500</a>

%F a(n) = (2*n + 1) * C(n)^3.

%F a(n) = (64*n^3 - 32*n^2 - 16*n + 8)*a(n - 1) / (n + 1)^3, for n >= 1.

%F a(n) = [x^n] hypergeom([1/2, -2*n - 1, -2*n], [2, 2], 4*x) (see A367023). - _Peter Luschny_, Nov 07 2023

%p C := n -> binomial(2*n, n)/(n + 1):

%p A358368 := n -> add(C(n)^2*binomial(n+k,k), k = 0..n): seq(A358368(n), n = 0..17);

%p # Alternative:

%p a := proc(n) option remember; if n = 0 then 1 else

%p (64*n^3 - 32*n^2 - 16*n + 8)*a(n - 1) / (n + 1)^3 fi end: seq(a(n), n = 0..17);

%p # Third form:

%p p := n -> hypergeom([1/2, -2*n - 1, -2*n], [2, 2], 4*x):

%p a := n -> coeff(simplify(p(n)), x, n): seq(a(n), n = 0..17);

%t Array[(2*#+1)*CatalanNumber[#]^3 &, 20, 0] (* _Paolo Xausa_, Feb 19 2024 *)

%Y Cf. A000108, A358436, A358437, A367023.

%K nonn

%O 0,2

%A _Peter Luschny_, Nov 16 2022