|
|
A358437
|
|
a(n) = Sum_{j=0..n} binomial(n, j)*C(n)*C(n-j), where C(n) is the n-th Catalan number.
|
|
3
|
|
|
1, 2, 10, 75, 714, 7896, 96492, 1265550, 17496050, 251958564, 3748716036, 57282665622, 895001791740, 14249639190000, 230568513719400, 3783394404776475, 62848104088770450, 1055378592304360500, 17894108081334292500, 306026774743629058350, 5274529871824080624900
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = C(n)^2*hypergeom([-n - 1, -n], [1/2 - n], -1/4).
a(n) = ((-80*n^3 + 240*n^2 - 220*n + 60)*a(n-2) + (24*n^3 - 20*n^2 + 4*n)*a(n-1)) / (n*(n + 1)^2) for n >= 2.
|
|
MAPLE
|
C := n -> binomial(2*n, n)/(n + 1):
A358437 := n -> add(binomial(n, j)*C(n)*C(n-j), j = 0..n):
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|