login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358436
a(n) = Sum_{j=0..n} C(n)*C(n-j), where C(n) is the n-th Catalan number.
4
1, 2, 8, 45, 322, 2730, 26004, 268554, 2940080, 33635316, 398300344, 4849845000, 60429982144, 767721774800, 9916427702880, 129937069996965, 1724052965464890, 23129299114182030, 313351935000465900, 4282621342230699930, 58994556159403576140, 818487022124443918740
OFFSET
0,2
FORMULA
a(n) = C(n)*(C(n)*hypergeom([1, -n - 1], [1/2 - n], 1/4) + 1/2).
a(n) = ((-64*n^3 + 160*n^2 - 112*n + 24)*a(n-2) + (20*n^3 - 14*n^2 + 2*n)*a(n-1)) / (n*(n + 1)^2).
MAPLE
C := n -> binomial(2*n, n)/(n + 1):
A358436 := n -> add(C(n)*C(n-j), j = 0..n):
seq(A358436(n), n = 0..21);
CROSSREFS
Sequence in context: A290445 A152401 A325138 * A009345 A084553 A144164
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 16 2022
STATUS
approved