login
A358436
a(n) = Sum_{j=0..n} C(n)*C(n-j), where C(n) is the n-th Catalan number.
4
1, 2, 8, 45, 322, 2730, 26004, 268554, 2940080, 33635316, 398300344, 4849845000, 60429982144, 767721774800, 9916427702880, 129937069996965, 1724052965464890, 23129299114182030, 313351935000465900, 4282621342230699930, 58994556159403576140, 818487022124443918740
OFFSET
0,2
FORMULA
a(n) = C(n)*(C(n)*hypergeom([1, -n - 1], [1/2 - n], 1/4) + 1/2).
a(n) = ((-64*n^3 + 160*n^2 - 112*n + 24)*a(n-2) + (20*n^3 - 14*n^2 + 2*n)*a(n-1)) / (n*(n + 1)^2).
MAPLE
C := n -> binomial(2*n, n)/(n + 1):
A358436 := n -> add(C(n)*C(n-j), j = 0..n):
seq(A358436(n), n = 0..21);
CROSSREFS
Sequence in context: A290445 A152401 A325138 * A009345 A084553 A144164
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 16 2022
STATUS
approved