login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360748
Expansion of Sum_{k>=0} (x * (1 + k*x^2))^k.
3
1, 1, 1, 2, 5, 10, 21, 53, 133, 327, 861, 2361, 6469, 18168, 52757, 155221, 463077, 1412656, 4379917, 13747504, 43834213, 141866555, 464650309, 1541008295, 5176660997, 17586913779, 60400627453, 209746820056, 735953607173, 2607716976945, 9330605338485
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..floor(n/3)} (n-2*k)^k * binomial(n-2*k,k).
a(n) ~ exp(exp(2/3)*n^(2/3)/3^(2/3) - 5*exp(4/3)*n^(1/3)/(18*3^(1/3)) + 22*exp(2)/81) * n^(n/3) / 3^(n/3 + 1) * (1 + (2*exp(2/3)/3^(5/3) - 3295*exp(8/3)/(2916*3^(2/3)))/n^(1/3) + (3^(2/3)/(8*exp(2/3)) + 35*exp(4/3)/(36*3^(1/3)) + 27379*exp(10/3)/(17496*3^(1/3)) + 10857025*exp(16/3)/(51018336*3^(1/3)))/n^(2/3)). - Vaclav Kotesovec, Feb 20 2023
MATHEMATICA
Join[{1}, Table[Sum[Binomial[n - 2*k, k] * (n - 2*k)^k, {k, 0, n/3}], {n, 1, 30}]] (* Vaclav Kotesovec, Feb 20 2023 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, (x*(1+k*x^2))^k))
(PARI) a(n) = sum(k=0, n\3, (n-2*k)^k*binomial(n-2*k, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 19 2023
STATUS
approved