OFFSET
0,3
COMMENTS
FORMULA
G.f.: A(x) = 1 + Sum_{n>=1} (x/(1-x))^(n*(n-1)/2+1) * (1/(1-x)^n - x^n)/(1/(1-x) - x).
G.f.: A(x) = Sum_{n>=0} x^A038722(n)/(1-x)^n.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 21*x^5 + 47*x^6 +...
which satisfies:
A(x) = 1 + x/(1-x) + x^2/(1-x)^3 + x^3/(1-x)^2 + x^4/(1-x)^6 + x^5/(1-x)^5 + x^6*(1+x)^4 +...
A(x) = 1 + (x/(1-x)) + (x/(1-x))^2*(1/(1-x)^2-x^2)/(1/(1-x)-x) + (x/(1-x))^4*(1/(1-x)^3-x^3)/(1/(1-x)-x) + (x/(1-x))^7*(1/(1-x)^4-x^4)/(1/(1-x)-x) + (x/(1-x))^11*(1/(1-x)^5-x^5)/(1/(1-x)-x) +...
Sequence A038722 begins:
[1, 3,2, 6,5,4, 10,9,8,7, 15,14,13,12,11, 21,20,19,18,17,16, 28,27,...].
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 27 2011
STATUS
approved