login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192317
G.f.: A(x) = Sum_{n>=0} x^n/(1-x)^A038722(n), where A038722(n) = floor(sqrt(2*n)+1/2)^2 - n + 1.
1
1, 1, 2, 5, 10, 21, 47, 103, 217, 451, 951, 2047, 4439, 9548, 20231, 42355, 88373, 185343, 392297, 836502, 1787158, 3803651, 8035998, 16846041, 35121641, 73103052, 152493454, 319600236, 673256721, 1423293503, 3011396839, 6358756643, 13372146841
OFFSET
0,3
COMMENTS
A038722 is a self-inverse permutation of the natural numbers. Thus, the function defined by g(x,y) = Sum_{n>=0} x^n * y^A038722(n) is symmetric: g(x,y) = g(y,x).
FORMULA
G.f.: A(x) = 1 + Sum_{n>=1} (x/(1-x))^(n*(n-1)/2+1) * (1/(1-x)^n - x^n)/(1/(1-x) - x).
G.f.: A(x) = Sum_{n>=0} x^A038722(n)/(1-x)^n.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 21*x^5 + 47*x^6 +...
which satisfies:
A(x) = 1 + x/(1-x) + x^2/(1-x)^3 + x^3/(1-x)^2 + x^4/(1-x)^6 + x^5/(1-x)^5 + x^6*(1+x)^4 +...
A(x) = 1 + (x/(1-x)) + (x/(1-x))^2*(1/(1-x)^2-x^2)/(1/(1-x)-x) + (x/(1-x))^4*(1/(1-x)^3-x^3)/(1/(1-x)-x) + (x/(1-x))^7*(1/(1-x)^4-x^4)/(1/(1-x)-x) + (x/(1-x))^11*(1/(1-x)^5-x^5)/(1/(1-x)-x) +...
Sequence A038722 begins:
[1, 3,2, 6,5,4, 10,9,8,7, 15,14,13,12,11, 21,20,19,18,17,16, 28,27,...].
PROG
(PARI) {a(n)=polcoeff(1+sum(m=1, sqrtint(2*n)+2, (x/(1-x+x*O(x^n)))^(m*(m-1)/2+1)/(1-x)^(m-1)*(1-x^m*(1-x)^m)/(1-x*(1-x))), n)}
(PARI) {A038722(n)=local(t=floor(1/2+sqrt(2*n))); if(n<1, 0, t^2-n+1)}
{a(n)=local(A=1+x); A=sum(m=0, n, x^m/(1-x+x*O(x^n))^A038722(m)); polcoeff(A, n)}
CROSSREFS
Sequence in context: A209469 A208275 A327764 * A361779 A360748 A151497
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 27 2011
STATUS
approved