OFFSET
0,3
COMMENTS
FORMULA
G.f. satisfies: A(x) = 1 + Sum_{n>=1} (x*A(x))^(n*(n-1)/2+1) * (A(x)^n - x^n)/(A(x)-x).
G.f. satisfies: A(x) = Sum_{n>=0} x^A038722(n) * A(x)^n.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 18*x^4 + 61*x^5 + 218*x^6 + 804*x^7 +...
which satisfies:
A(x) = 1 + x*A(x) + x^2*A(x)^3 + x^3*A(x)^2 + x^4*A(x)^6 + x^5*A(x)^5 + x^6*A(x)^4 +...
A(x) = 1 + x*A(x) + x^2*A(x)^2*(A(x)^2-x^2)/(A(x)-x) + x^4*A(x)^4*(A(x)^3-x^3)/(A(x)-x) + x^7*A(x)^7*(A(x)^4-x^4)/(A(x)-x) + x^11*A(x)^11*(A(x)^5-x^5)/(A(x)-x) +...
Sequence A038722 begins:
[1, 3,2, 6,5,4, 10,9,8,7, 15,14,13,12,11, 21,20,19,18,17,16, 28,27,...].
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 27 2011
STATUS
approved