login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192483
G.f.: A(x) = Sum_{n>=0} x^n * A(x)^A003188(n) where A003188(n) = n XOR floor(n/2).
1
1, 1, 2, 6, 18, 61, 220, 822, 3157, 12378, 49345, 199441, 815467, 3367153, 14020938, 58811032, 248260925, 1053893607, 4496248445, 19268100048, 82902438819, 357987967157, 1550951132419, 6739554074740, 29366902576469, 128287060703669
OFFSET
0,3
COMMENTS
A003188(n) is the decimal equivalent of the binary Gray code for n; A003188 forms a permutation of the nonnegative integers.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 18*x^4 + 61*x^5 + 220*x^6 +...
The g.f. A(x) satisfies:
A(x) = 1 + x*A(x) + x^2*A(x)^3 + x^3*A(x)^2 + x^4*A(x)^6 + x^5*A(x)^7 + x^6*A(x)^5 + x^7*A(x)^4 + x^8*A(x)^12 + x^9*A(x)^13 + x^10*A(x)^15 +...
where the powers of A(x) are given by A003188, which begins:
[0,1,3,2,6,7,5,4,12,13,15,14,10,11,9,8,24,25,27,26,30,31,29,...].
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*(A+x*O(x^n))^bitxor(m, m\2))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A150049 A150050 A192318 * A150051 A148462 A123639
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 01 2011
STATUS
approved