OFFSET
0,2
FORMULA
G.f. A(x) satisfies the following identities.
(1) 1 = Sum_{n>=0} ( (1+x)^n - 11*x*A(x) )^n * 5^n / 6^(n+1).
(2) 1 = Sum_{n>=0} (1+x)^(n^2) * 5^n / (6 + 55*x*A(x)*(1+x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 65*x + 15685*x^2 + 6376505*x^3 + 3524871325*x^4 + 2420187902975*x^5 + 1967093055766825*x^6 + 1838251199473028225*x^7 + ...
such that
1 = 1/6 + ((1+x) - 11*x*A(x))*5/6^2 + ((1+x)^2 - 11*x*A(x))^2*5^2/6^3 + ((1+x)^3 - 11*x*A(x))^3*5^3/6^4 + ((1+x)^4 - 11*x*A(x))^4*5^4/6^5 + ...
Also,
1 = 1/(6 + 55*x*A(x)) + (1+x)*5/(6 + 55*x*A(x)*(1+x))^2 + (1+x)^4*5^2/(6 + 55*x*A(x)*(1+x)^2)^3 + (1+x)^9*5^3/(6 + 55*x*A(x)*(1+x)^3)^4 + ...
PROG
(PARI) \p120
{A=vector(1); A[1]=1; for(i=1, 20, A = concat(A, 0);
A[#A] = round( Vec( sum(n=0, 1200, ( (1+x +x*O(x^#A))^n - 11*x*Ser(A) )^n * 5^n/6^(n+1)*1.)/55 ) )[#A+1]); A}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 10 2019
STATUS
approved