login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323316
G.f. A(x) satisfies: 1 = Sum_{n>=0} ( (1+x)^n - 11*x*A(x) )^n * 5^n / 6^(n+1).
9
1, 65, 15685, 6376505, 3524871325, 2420187902975, 1967093055766825, 1838251199473028225, 1937082794808580188025, 2269921874941072916242625, 2926922052137279952439869625, 4118264067683762888405147993375, 6279611163775388892921689107812625, 10316794138820163374949788420225125625, 18170957626950430345183391610737313950125, 34161178486729901360568404660435153779920125
OFFSET
0,2
FORMULA
G.f. A(x) satisfies the following identities.
(1) 1 = Sum_{n>=0} ( (1+x)^n - 11*x*A(x) )^n * 5^n / 6^(n+1).
(2) 1 = Sum_{n>=0} (1+x)^(n^2) * 5^n / (6 + 55*x*A(x)*(1+x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 65*x + 15685*x^2 + 6376505*x^3 + 3524871325*x^4 + 2420187902975*x^5 + 1967093055766825*x^6 + 1838251199473028225*x^7 + ...
such that
1 = 1/6 + ((1+x) - 11*x*A(x))*5/6^2 + ((1+x)^2 - 11*x*A(x))^2*5^2/6^3 + ((1+x)^3 - 11*x*A(x))^3*5^3/6^4 + ((1+x)^4 - 11*x*A(x))^4*5^4/6^5 + ...
Also,
1 = 1/(6 + 55*x*A(x)) + (1+x)*5/(6 + 55*x*A(x)*(1+x))^2 + (1+x)^4*5^2/(6 + 55*x*A(x)*(1+x)^2)^3 + (1+x)^9*5^3/(6 + 55*x*A(x)*(1+x)^3)^4 + ...
PROG
(PARI) \p120
{A=vector(1); A[1]=1; for(i=1, 20, A = concat(A, 0);
A[#A] = round( Vec( sum(n=0, 1200, ( (1+x +x*O(x^#A))^n - 11*x*Ser(A) )^n * 5^n/6^(n+1)*1.)/55 ) )[#A+1]); A}
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 10 2019
STATUS
approved