login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176370
x-values in the solution to x^2 - 66*y^2 = 1.
2
1, 65, 8449, 1098305, 142771201, 18559157825, 2412547746049, 313612647828545, 40767231669964801, 5299426504447595585, 688884678346517461249, 89549708758542822366785, 11640773253932220390220801
OFFSET
1,2
COMMENTS
The corresponding values of y of this Pell equation are in A176372.
FORMULA
a(n) = 130*a(n-1) - a(n-2) with a(1)=1, a(2)=65.
G.f.: x*(1-65*x)/(1-130*x+x^2).
MAPLE
seq(coeff(series(x*(1-65*x)/(1-130*x+x^2), x, n+1), x, n), n = 1..15); # G. C. Greubel, Dec 08 2019
MATHEMATICA
LinearRecurrence[{130, -1}, {1, 65}, 30]
PROG
(Magma) I:=[1, 65]; [n le 2 select I[n] else 130*Self(n-1)-Self(n-2): n in [1..20]];
(PARI) my(x='x+O('x^15)); Vec(x*(1-65*x)/(1-130*x+x^2)) \\ G. C. Greubel, Dec 08 2019
(Sage)
def A176368_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1-65*x)/(1-130*x+x^2) ).list()
a=A176368_list(15); a[1:] # G. C. Greubel, Dec 08 2019
(GAP) a:=[1, 65];; for n in [3..15] do a[n]:=130*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 08 2019
CROSSREFS
Cf. A176372.
Sequence in context: A296144 A373761 A251150 * A093265 A264541 A323316
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Apr 16 2010
STATUS
approved