The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176370 x-values in the solution to x^2 - 66*y^2 = 1. 2
 1, 65, 8449, 1098305, 142771201, 18559157825, 2412547746049, 313612647828545, 40767231669964801, 5299426504447595585, 688884678346517461249, 89549708758542822366785, 11640773253932220390220801 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The corresponding values of y of this Pell equation are in A176372. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 Index entries for linear recurrences with constant coefficients, signature (130,-1). FORMULA a(n) = 130*a(n-1) - a(n-2) with a(1)=1, a(2)=65. G.f.: x*(1-65*x)/(1-130*x+x^2). MAPLE seq(coeff(series(x*(1-65*x)/(1-130*x+x^2), x, n+1), x, n), n = 1..15); # G. C. Greubel, Dec 08 2019 MATHEMATICA LinearRecurrence[{130, -1}, {1, 65}, 30] PROG (Magma) I:=[1, 65]; [n le 2 select I[n] else 130*Self(n-1)-Self(n-2): n in [1..20]]; (PARI) my(x='x+O('x^15)); Vec(x*(1-65*x)/(1-130*x+x^2)) \\ G. C. Greubel, Dec 08 2019 (Sage) def A176368_list(prec): P. = PowerSeriesRing(ZZ, prec) return P( x*(1-65*x)/(1-130*x+x^2) ).list() a=A176368_list(15); a[1:] # G. C. Greubel, Dec 08 2019 (GAP) a:=[1, 65];; for n in [3..15] do a[n]:=130*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 08 2019 CROSSREFS Cf. A176372. Sequence in context: A144661 A296144 A251150 * A093265 A264541 A323316 Adjacent sequences: A176367 A176368 A176369 * A176371 A176372 A176373 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Apr 16 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 19:21 EDT 2024. Contains 371754 sequences. (Running on oeis4.)