login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176371
Primes p such that reversal(p) - 13 is a square.
4
31, 41, 71, 83, 281, 311, 431, 479, 733, 751, 797, 2011, 2857, 3163, 4373, 4397, 4943, 7541, 7577, 7583, 9413, 9491, 20533, 20731, 20771, 24151, 24547, 24767, 26249, 28979, 31121, 41201, 41609, 43321, 43391, 43753, 45641, 49459, 49463, 49811, 49891
OFFSET
1,1
COMMENTS
R(n) denotes the Reversal of a natural number n
List of all (p,N) for p < 10^6 - 1:
(*) for emirp pair (p,R(p)), (+) if square base N is a prime
(41,1), (71,2) (+) (*), (83,5) (+), (281,13) (+), (311,10) (*), (431,11) (+), (479,31) (+), (733,18) (*), (751,12) (*), (797,28),
(2011,33), (2857,87), (4373,61) (+), (4397,89) (+), (4943,59) (+), (7541,38), (7577,88) (*), (7583,62), (9413,56), (9491,44) (*), (20533,183), (20731,117), (20771,133), (24151,123), (24547,273), (24767,277) (+), (26249,307) (+), (28979,313) (+), (31121,110) (*), (41201,101) (+),
(41609,301), (43321,111), (43391,139) (+), (43753,189), (45641,121), (49459,309), (49463,191) (+), (49811,109), (49891,141), (71293,198) (*),
(73133,182), (73471,132), (73597,282) (*), (75521,112), (77611,108) (*), (77849,308), (77863,192) (*), (79613,178), (79841,122) (*), (83207,265),
(83231,115), (83243,185), (83299,315), (90031,114) (*), (92801,104), (96431,116) (*), (98057,274)
REFERENCES
W. W. R. Ball, H. S. M.Coxeter: Mathematical Recreations and Essays, Dover Publications, 13th edition, 1987
O. Fritsche, R. Mischak and T. Krome: Verflixt und zugeknobelt, Mehr mathematische Raetselgeschichten, Rowohlt TB. Nr.62190, 2007
C. W. Trigg, Primes with Reverses That Are Powers, J. Rec. Math. 17, 1985
EXAMPLE
41 = prime(13), R(41) - 13 = 14 - 13 = 1^2, is a term.
71 = prime(20), 17 - 13 = 2^2, is a term.
83 = prime(23), 38 - 13 = 5^2, is a term.
797 = prime(139) = palindromic prime(18), N = 28^2, is also a term.
Note successive terms that are also consecutive primes: p(17) = 7577, p(18) = 7583, p(36) = 49459, p(37) = 49463, p(46) = 77849, p(47) = 77863.
PROG
(PARI) isok(n) = {if (! isprime(n), return (0)); d = digits(n); revn = sum(i=1, #d, d[i]*10^(i - 1)); issquare(revn-13); } \\ Michel Marcus, Aug 25 2013
(Python)
from sympy import isprime
A176371_list, i, j = [], 0, 13
while j < 10**10:
p = int(str(j)[::-1])
if j % 10 and isprime(p):
A176371_list.append(p)
j += 2*i+1
i += 1
A176371_list = sorted(A176371_list) # Chai Wah Wu, Dec 17 2015
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 16 2010
EXTENSIONS
Two more terms 31 and 3163 added by Michel Marcus, Aug 25 2013
STATUS
approved