login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that reversal(p) - 13 is a square.
4

%I #13 Dec 18 2015 03:37:57

%S 31,41,71,83,281,311,431,479,733,751,797,2011,2857,3163,4373,4397,

%T 4943,7541,7577,7583,9413,9491,20533,20731,20771,24151,24547,24767,

%U 26249,28979,31121,41201,41609,43321,43391,43753,45641,49459,49463,49811,49891

%N Primes p such that reversal(p) - 13 is a square.

%C R(n) denotes the Reversal of a natural number n

%C List of all (p,N) for p < 10^6 - 1:

%C (*) for emirp pair (p,R(p)), (+) if square base N is a prime

%C (41,1), (71,2) (+) (*), (83,5) (+), (281,13) (+), (311,10) (*), (431,11) (+), (479,31) (+), (733,18) (*), (751,12) (*), (797,28),

%C (2011,33), (2857,87), (4373,61) (+), (4397,89) (+), (4943,59) (+), (7541,38), (7577,88) (*), (7583,62), (9413,56), (9491,44) (*), (20533,183), (20731,117), (20771,133), (24151,123), (24547,273), (24767,277) (+), (26249,307) (+), (28979,313) (+), (31121,110) (*), (41201,101) (+),

%C (41609,301), (43321,111), (43391,139) (+), (43753,189), (45641,121), (49459,309), (49463,191) (+), (49811,109), (49891,141), (71293,198) (*),

%C (73133,182), (73471,132), (73597,282) (*), (75521,112), (77611,108) (*), (77849,308), (77863,192) (*), (79613,178), (79841,122) (*), (83207,265),

%C (83231,115), (83243,185), (83299,315), (90031,114) (*), (92801,104), (96431,116) (*), (98057,274)

%D W. W. R. Ball, H. S. M.Coxeter: Mathematical Recreations and Essays, Dover Publications, 13th edition, 1987

%D O. Fritsche, R. Mischak and T. Krome: Verflixt und zugeknobelt, Mehr mathematische Raetselgeschichten, Rowohlt TB. Nr.62190, 2007

%D C. W. Trigg, Primes with Reverses That Are Powers, J. Rec. Math. 17, 1985

%H Chai Wah Wu, <a href="/A176371/b176371.txt">Table of n, a(n) for n = 1..7605</a>

%e 41 = prime(13), R(41) - 13 = 14 - 13 = 1^2, is a term.

%e 71 = prime(20), 17 - 13 = 2^2, is a term.

%e 83 = prime(23), 38 - 13 = 5^2, is a term.

%e 797 = prime(139) = palindromic prime(18), N = 28^2, is also a term.

%e Note successive terms that are also consecutive primes: p(17) = 7577, p(18) = 7583, p(36) = 49459, p(37) = 49463, p(46) = 77849, p(47) = 77863.

%o (PARI) isok(n) = {if (! isprime(n), return (0)); d = digits(n); revn = sum(i=1, #d, d[i]*10^(i - 1)); issquare(revn-13);} \\ _Michel Marcus_, Aug 25 2013

%o (Python)

%o from sympy import isprime

%o A176371_list, i, j = [], 0, 13

%o while j < 10**10:

%o p = int(str(j)[::-1])

%o if j % 10 and isprime(p):

%o A176371_list.append(p)

%o j += 2*i+1

%o i += 1

%o A176371_list = sorted(A176371_list) # _Chai Wah Wu_, Dec 17 2015

%Y Cf. A000040, A000290, A002385, A006567, A007488.

%K base,nonn

%O 1,1

%A Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 16 2010

%E Two more terms 31 and 3163 added by _Michel Marcus_, Aug 25 2013