login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284531
Primes p such that 6p - 5 and 6p + 5 are consecutive primes.
1
31, 41, 71, 97, 139, 193, 337, 349, 421, 487, 587, 619, 643, 701, 811, 827, 1021, 1051, 1093, 1217, 1249, 1259, 1471, 1571, 1721, 1747, 1861, 1949, 2087, 2131, 2383, 2521, 2549, 2591, 2957, 3023, 3083, 3209, 3529, 3613, 3779, 3833, 3947, 4283, 4409, 4451, 4481, 4483, 4567, 4591, 4733
OFFSET
1,1
COMMENTS
a(n + 1) = a(n) + 2 for n = 47, 386, 868, 1000, 1247, 1521, 1834, 2271, 2435, 2437, 2468, 2483, 2811, 2819, 2960, 3202, 3531, 3581, 5021, 5178, 5245, 5669, 6009, 6087, 6198, 6686, 7017, 7029, 7454, 7576, 7699, 8557, 8940, 9018, 10130, 10240, 10449, 10578, 10952, 11070, 11103, 11199, ...
E.g., a(42)=4481 and a(43)=4483.
LINKS
EXAMPLE
31*6 - 5 = 181 = A000040(42) and 31*6 + 5 = 191 = A000040(43).
MAPLE
filter:= p -> isprime(p) and isprime(6*p-5) and isprime(6*p+5) and not isprime(6*p-1) and not isprime(6*p+1):
select(filter, [seq(i, i=3..10000, 2)]); # Robert Israel, Apr 07 2017
MATHEMATICA
Select[Range[31, 5000, 2], PrimeQ[#] && PrimeQ[a = 6 # - 5] && NextPrime[a] == a + 10 &]
cp6Q[n_]:=Module[{p1=6n-5}, PrimeQ[p1]&&NextPrime[p1]==6n+5]; Select[ Prime[ Range[ 1000]], cp6Q] (* Harvey P. Dale, Jun 05 2017 *)
CROSSREFS
Subsequence of A127430. Cf. A000040.
Sequence in context: A285805 A141180 A176371 * A040987 A040180 A158754
KEYWORD
nonn
AUTHOR
Zak Seidov, Mar 28 2017
STATUS
approved