

A284532


The lexicographically earliest sequence of positive integers such that a(1) = a(2) = 1 and a(n + k) != a(n  k) for all k <= a(n).


2



1, 1, 2, 2, 3, 3, 1, 4, 3, 1, 2, 4, 1, 2, 2, 1, 3, 2, 1, 3, 2, 1, 4, 2, 1, 4, 2, 1, 3, 2, 1, 3, 2, 1, 4, 2, 1, 4, 2, 1, 3, 2, 1, 3, 2, 1, 4, 2, 1, 4, 2, 1, 3, 2, 1, 3, 2, 1, 4, 2, 1, 4, 2, 1, 3, 2, 1, 3, 2, 1, 4, 2, 1, 4, 2, 1, 3, 2, 1, 3, 2, 1, 4, 2, 1, 4, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Starting with a(15), this sequence enters a twelve term loop: 2, 1, 3, 2, 1, 3, 2, 1, 4, 2, 1, 4.


LINKS

Peter Kagey, Table of n, a(n) for n = 1..1000


FORMULA

a(k + 12 * i) = a(k) for k >= 15.


EXAMPLE

a(4) = 2 which means that a(4+2) = a(6) != 1 = a(42) (because a(4) >= 2).
a(5) = 3 which means that a(5+1) = a(6) != 2 = a(51) (because a(5) >= 1).
Therefore a(6) = 3.


CROSSREFS

Cf. A284548.
Sequence in context: A230040 A242361 A116464 * A125585 A327236 A191860
Adjacent sequences: A284529 A284530 A284531 * A284533 A284534 A284535


KEYWORD

nonn


AUTHOR

Peter Kagey and Alec Jones, Mar 28 2017


STATUS

approved



