login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

x-values in the solution to x^2 - 66*y^2 = 1.
2

%I #14 Sep 08 2022 08:45:52

%S 1,65,8449,1098305,142771201,18559157825,2412547746049,

%T 313612647828545,40767231669964801,5299426504447595585,

%U 688884678346517461249,89549708758542822366785,11640773253932220390220801

%N x-values in the solution to x^2 - 66*y^2 = 1.

%C The corresponding values of y of this Pell equation are in A176372.

%H Vincenzo Librandi, <a href="/A176370/b176370.txt">Table of n, a(n) for n = 1..200</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (130,-1).

%F a(n) = 130*a(n-1) - a(n-2) with a(1)=1, a(2)=65.

%F G.f.: x*(1-65*x)/(1-130*x+x^2).

%p seq(coeff(series(x*(1-65*x)/(1-130*x+x^2), x, n+1), x, n), n = 1..15); # _G. C. Greubel_, Dec 08 2019

%t LinearRecurrence[{130,-1},{1,65},30]

%o (Magma) I:=[1, 65]; [n le 2 select I[n] else 130*Self(n-1)-Self(n-2): n in [1..20]];

%o (PARI) my(x='x+O('x^15)); Vec(x*(1-65*x)/(1-130*x+x^2)) \\ _G. C. Greubel_, Dec 08 2019

%o (Sage)

%o def A176368_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( x*(1-65*x)/(1-130*x+x^2) ).list()

%o a=A176368_list(15); a[1:] # _G. C. Greubel_, Dec 08 2019

%o (GAP) a:=[1,65];; for n in [3..15] do a[n]:=130*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Dec 08 2019

%Y Cf. A176372.

%K nonn,easy

%O 1,2

%A _Vincenzo Librandi_, Apr 16 2010