OFFSET
0,2
COMMENTS
See comments in A090358.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..320
FORMULA
G.f.: A(x)^6 = A(x/(1-x))^5/(1-x)^5.
a(n) ~ (n-1)! / (6 * (log(6/5))^(n+1)). - Vaclav Kotesovec, Nov 19 2014
From Peter Bala, May 26 2015: (Start)
O.g.f.: A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ), where b(n) = Sum_{k = 1..n} k!*Stirling2(n,k)*5^k = A094418(n).
MATHEMATICA
nmax = 16; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^6 - A[x/(1 - x)]^5/(1 - x)^5 + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=1+x+x*O(x^n); for(k=1, n, B=subst(A, x, x/(1-x))/(1-x)+x*O(x^n); A=A-A^6+B^5); polcoeff(A, n, x))}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Nov 26 2003
STATUS
approved