login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067857
Sum_{k|n} a(k)/k! = Sum_{j=1 to n} 1/j, sum on left is over positive divisors k of n.
1
1, 1, 5, 14, 154, 84, 8028, 25584, 361296, 528480, 80627040, 33471360, 13575738240, 13835646720, 263577888000, 13869128448000, 867718162483200, 316745643110400, 309920046408806400, 207862451693568000
OFFSET
1,3
COMMENTS
The terms are not all positive. The first negative one is a(30) = -22690644647302814715858124800000. Conjecture: a(n) < 0 if and only if
A001221(n) is an odd number >= 3. - Robert Israel, May 15 2015
LINKS
FORMULA
MOBIUS transform of Harmonic Numbers is a(n)/n!. - Michael Somos, May 24 2015
a(n) = n! * Sum_{k=1..n} A191898(n,k)/k. - Mats Granvik, Jul 10 2016
MAPLE
for n from 1 to 50 do
A[n]:= n! * (harmonic(n) - add(A[k]/k!, k = numtheory:-divisors(n) minus {n}))
od:
seq(A[n], n=1..50); # Robert Israel, May 15 2015
MATHEMATICA
(*Recurrence:*)
Clear[t]; s = 1; nn = 20; t[1, 1] = 1;
t[n_, k_] :=
t[n, k] =
If[k == 1, HarmonicNumber[n, s] - Sum[t[n, k + i], {i, 1, n - 1}],
If[Mod[n, k] == 0, t[n/k, 1], 0], 0]; Table[t[n, 1]*n!, {n, 1, nn}]
(* Mats Granvik, May 14 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, n! * sumdiv(n, d, moebius(n/d) * sum(k=1, d, 1/k)))}; /* Michael Somos, May 24 2015 */
CROSSREFS
Cf. A191898.
Sequence in context: A070135 A317037 A317691 * A027832 A128946 A156219
KEYWORD
sign
AUTHOR
Leroy Quet, Feb 15 2002
STATUS
approved