The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067854 a(n) = cardinality of the (ordered) list L_n defined inductively by: L_1 = {2}; if, reading from left to right, there is a member p of L_n such that prime(n+1) can be appended to the beginning or end of p so that their neighboring digits are equal, then append prime(n+1) to the beginning or end of p to obtain L_(n+1); otherwise, add prime(n+1) to the end of the list L_n to obtain L_(n+1). 2
 1, 2, 3, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20, 21, 22, 23, 23, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 31, 31, 32, 33, 34, 34, 35, 35, 36, 37, 37, 37, 37, 37, 37, 37, 37, 37 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Eric M. Schmidt, Table of n, a(n) for n = 1..10000 EXAMPLE L_n for 1,...,5 are: {2}, {2,3}, {2,3,5}, {2,3,5,7}, {2,3,5,7,11}, so that a(i) = i for i = 1,...,5. Prime(6) = 13 can be appended to the beginning of 3 (in L_5) so that their neighboring digits (i.e. 3s) are equal. Hence L_6 = {2,133,5,7,11} and a(6) = 5. Prime(7) = 17 can be appended to the beginning of 7 in L_6 so that their neighboring digits are equal; so L_7 = {2,133,5,177,11} and a(7) = 5. It would be interesting to have a closed-form expression giving, at least asymptotically or statistically, the value of a(n). PROG (Sage) def a_list(n) :     res = []     curlist = []     for m in range(1, n+1) :         d = nth_prime(m).digits()         ds = [d[-1], d]         matcheditem = false         for i in range(len(curlist)) :             if curlist[i] == ds :                 curlist[i] = ds                 matcheditem = true                 break             if curlist[i] == ds :                 curlist[i] = ds                 matcheditem = true                 break         if not matcheditem : curlist.append(ds)         res.append(len(curlist))     return res # Eric M. Schmidt, Oct 20 2016 CROSSREFS Cf. A062406. Sequence in context: A246264 A102676 A087846 * A194214 A251416 A087829 Adjacent sequences:  A067851 A067852 A067853 * A067855 A067856 A067857 KEYWORD base,easy,nonn AUTHOR Joseph L. Pe, Feb 15 2002 EXTENSIONS Extended and corrected by Eric M. Schmidt, Oct 20 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 22:12 EST 2022. Contains 350466 sequences. (Running on oeis4.)