Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3017 #61 Nov 17 2022 07:20:52
%S 1,3,16,75,361,1728,8281,39675,190096,910803,4363921,20908800,
%T 100180081,479991603,2299777936,11018898075,52794712441,252954664128,
%U 1211978608201,5806938376875,27822713276176,133306628004003,638710426743841,3060245505715200
%N Area of n-th triple of squares around a triangle.
%C a(n)*(-1)^(n+1) is the r=-3 member of the r-family of sequences S_r(n), n>=1, defined in A092184 where more information can be found.
%C The sequence is the case P1 = 3, P2 = -10, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - _Peter Bala_, Apr 03 2014
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H G. C. Greubel, <a href="/A005386/b005386.txt">Table of n, a(n) for n = 1..1000</a>
%H J. Meeus, <a href="/A005386/a005386.pdf">Letter to N. J. A. Sloane with attachment, Mar 1975</a>
%H J. C. G. Nottrot, <a href="https://pyth.eu/uploads/user/ArchiefPDF/Pyth14-4.pdf">Vierkantenkransen rond een driehoek</a>, Pythagoras (Netherlands), 14 (1975-1976) 77-81.
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H H. C. Williams and R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
%H H. C. Williams and R. K. Guy, <a href="https://www.emis.de/journals/INTEGERS/papers/a17self/a17self.Abstract.html">Some Monoapparitic Fourth Order Linear Divisibility Sequences</a> Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,4,-1).
%F G.f.: x*(1-x)/((1+x)*(1-5*x+x^2)).
%F a(n) = 4*a(n-1) + 4*a(n-2) - a(n-3), a(1)=1, a(2)=3, a(3)=16.
%F a(n) = (2/7)*(T(n, 5/2) - (-1)^n) with twice Chebyshev's polynomials of the first kind evaluated at x=5/2: 2*T(n, 5/2) = A003501(n) = ((5+sqrt(21))^n + (5-sqrt(21))^n)/2^n. - _Wolfdieter Lang_, Oct 18 2004
%F a(2n) = A003690(n). a(2n+1) = A004253(n)^2. - Alexander Evnin, Mar 11 2012
%F From _Peter Bala_, Apr 03 2014: (Start)
%F a(n) = |U(n-1, sqrt(3)*i/2)|^2, where U(n,x) denotes the Chebyshev polynomial of the second kind.
%F a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 5/2; 1, 3/2] and T(n,x) denotes the Chebyshev polynomial of the first kind.
%F See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
%p A005386:=-(-1+z)/(z+1)/(z**2-5*z+1); [Conjectured by _Simon Plouffe_ in his 1992 dissertation.]
%p a:= n-> (Matrix([[0,1,3]]). Matrix(3, (i,j)-> if (i=j-1) then 1 elif j=1 then [4,4,-1][i] else 0 fi)^(n))[1,1]: seq(a(n), n=1..25); # _Alois P. Heinz_, Aug 05 2008
%t a[n_]:= Module[{n1=1, n2=0}, Do[{n1, n2}={Sqrt[3]*n1+n2, n1}, {n-1}];n1^2];
%t Table[a[n], {n,30}]
%t a[n_]:= Round[((5+Sqrt[21])/2)^n/7]; Table[a[n], {n, 30}]
%t Rest@(CoefficientList[Series[x/(1-x*(Sqrt[3]+x)), {x, 0, 30}], x])^2
%t Abs[ChebyshevU[Range[1,40]-1, I*Sqrt[3]/2]]^2 (* _G. C. Greubel_, Nov 16 2022 *)
%o (Magma) I:=[1, 3, 16]; [n le 3 select I[n] else 4*Self(n-1) +4*Self(n-2) -Self(n-3): n in [1..41]]; // _G. C. Greubel_, Nov 16 2022
%o (SageMath)
%o def A005386(n): return abs(chebyshev_U(n-1, i*sqrt(3)/2))^2
%o [A005386(n) for n in range(1,40)] # _G. C. Greubel_, Nov 16 2022
%Y Essentially the same as A003769.
%Y First differences of A099025.
%Y Cf. A100047.
%K nonn,easy
%O 1,2
%A Jean Meeus
%E Edited by _Peter J. C. Moses_, Apr 23 2004
%E More terms from Pab Ter (pabrlos(AT)yahoo.com), May 09 2004