login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303160
Number of permutations p of [n] such that 0p has exactly ceiling(n/2) alternating runs.
4
1, 1, 1, 3, 7, 43, 148, 1344, 6171, 74211, 425976, 6384708, 43979902, 789649750, 6346283560, 132789007200, 1219725741715, 29145283614115, 301190499710320, 8092186932120060, 92921064554444490, 2772830282722806978, 35025128774218944648, 1149343084932146388144
OFFSET
0,4
LINKS
FORMULA
a(n) = A186370(n,ceiling(n/2)).
EXAMPLE
a(2) = 1: 12.
a(3) = 3: 132, 231, 321.
a(4) = 7: 1243, 1342, 1432, 2341, 2431, 3421, 4321.
MAPLE
b:= proc(n, k) option remember; `if`(k=0,
`if`(n=0, 1, 0), `if`(k<0 or k>n, 0,
k*b(n-1, k)+b(n-1, k-1)+(n-k+1)*b(n-1, k-2)))
end:
a:= n-> b(n, ceil(n/2)):
seq(a(n), n=0..25);
MATHEMATICA
b[n_, k_] := b[n, k] = If[k == 0,
If[n == 0, 1, 0], If[k < 0 || k > n, 0,
k*b[n-1, k] + b[n-1, k-1] + (n-k+1)*b[n-1, k-2]]];
a[n_] := b[n, Ceiling[n/2]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 31 2021, after Alois P. Heinz *)
CROSSREFS
Bisections give: A291677 (even part), A303159 (odd part).
Cf. A186370.
Sequence in context: A101208 A050633 A107636 * A258435 A074268 A019026
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 19 2018
STATUS
approved