login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303159
Number of permutations p of [2n+1] such that 0p has exactly n+1 alternating runs.
4
1, 3, 43, 1344, 74211, 6384708, 789649750, 132789007200, 29145283614115, 8092186932120060, 2772830282722806978, 1149343084932146388144, 566844242187778610648334, 328043720353943611689811272, 220147053200818211779539712908, 169580070210721829547034445169024
OFFSET
0,2
LINKS
FORMULA
a(n) = A186370(2n+1,n+1).
a(n) ~ c * d^n * n!^2, where d = 3.4210546206711870249402157940795853513031388... and c = 0.974460718185930534652526741942010711752... - Vaclav Kotesovec, Apr 29 2018
EXAMPLE
a(1) = 3: 132, 231, 321.
MAPLE
b:= proc(n, k) option remember; `if`(k=0,
`if`(n=0, 1, 0), `if`(k<0 or k>n, 0,
k*b(n-1, k)+b(n-1, k-1)+(n-k+1)*b(n-1, k-2)))
end:
a:= n-> b(2*n+1, n+1):
seq(a(n), n=0..20);
MATHEMATICA
b[n_, k_] := b[n, k] = If[k == 0,
If[n == 0, 1, 0], If[k < 0 || k > n, 0,
k b[n-1, k] + b[n-1, k-1] + (n-k+1) b[n-1, k-2]]];
a[n_] := b[2n+1, n+1];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
CROSSREFS
Bisection (odd part) of A303160.
Cf. A186370.
Sequence in context: A364498 A340822 A355004 * A274387 A300988 A136648
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 19 2018
STATUS
approved