login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355004
a(n) = Sum_{k=0..n} A271703(k + n, n), row sums of A355005.
1
1, 3, 43, 1333, 63321, 4034341, 321994723, 30869387193, 3454384526353, 441903886812721, 63608031487665171, 10174227287873082853, 1790258521269694523113, 343669522619597368671933, 71473405251333054552561091, 16008271911444915765782477041, 3841639137772270982094393928353
OFFSET
0,2
FORMULA
a(n) = A187535(n) * hypergeom([1, -n], [1 - 2*n, -2*n], -1].
From Vaclav Kotesovec, Jun 15 2022: (Start)
Recurrence: (n-1)^2 * n * (64*n^4 - 464*n^3 + 1244*n^2 - 1475*n + 663)*a(n) = (n-1)*(2*n-3)*(512*n^6 - 3968*n^5 + 11872*n^4 - 17336*n^3 + 12880*n^2 - 4597*n + 617)*a(n-1) + (2048*n^7 - 19968*n^6 + 78912*n^5 - 163216*n^4 + 191140*n^3 - 128857*n^2 + 48842*n - 8937)*a(n-2) + 4*(2*n-5)*(2*n-3)*(64*n^4 - 208*n^3 + 236*n^2 - 123*n + 32)*a(n-3).
a(n) ~ 2^(4*n - 1/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n)). (End)
MAPLE
L := (n, k) -> ifelse(n = k, 1, binomial(n-1, k-1)*n! / k!):
seq(add(L(n + k, n), k = 0..n), n = 0..16);
MATHEMATICA
Table[Sum[Binomial[n + k, n]*FactorialPower[n + k - 1, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 15 2022 *)
CROSSREFS
Cf. A271703 (unsigned Lah), A355005, A187535.
Sequence in context: A201784 A364498 A340822 * A303159 A274387 A300988
KEYWORD
nonn
AUTHOR
Peter Luschny, Jun 15 2022
STATUS
approved