login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274387
A diagonal of rectangular array A274391 of coefficients in functions that satisfy W_n(x) = W_{n-1}(x)^W_n(x), with W_0(x) = exp(x).
3
1, 1, 3, 43, 1345, 71721, 5787931, 656778529, 99609347825, 19451450431009, 4752356577301171, 1419957082098657081, 509327639955159790777, 215968308944943346029577, 106859555896120941092549371, 61015970334444558798467062801, 39820542372512292977427634794721, 29454908124155520098406206592241281, 24512125500202005940687498958550124771, 22799363145943007981544986753209784020249, 23563018240183207044471748499194925348436201
OFFSET
0,3
COMMENTS
a(0) = 1 by convention. All terms appear to be odd.
LINKS
Paul D. Hanna and Vaclav Kotesovec, Table of n, a(n) for n = 0..200 (terms 0..100 from Paul D. Hanna)
FORMULA
a(n) ~ c * (n-1)! * n! * exp(n), where c = 0.172... . - Vaclav Kotesovec, Jun 27 2016
PROG
(PARI) {ITERATE(F, n, k) = my(G=x +x*O(x^k)); for(i=1, n, G=subst(G, x, F)); G}
{A274391(n, k) = my(TREE = serreverse(x*exp(-x +x*O(x^k)))); k!*polcoeff(exp(ITERATE(TREE, n, k)), k)}
/* Print table A274391 */
for(n=0, 10, for(k=0, 10, print1(A274391(n, k), ", ")); print("..."))
/* Print this sequence as a diagonal in A274391 */
for(n=0, 20, print1(A274391(n-1, n), ", "))
CROSSREFS
Sequence in context: A340822 A355004 A303159 * A300988 A136648 A114337
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 24 2016
STATUS
approved