login
A114337
Primes which are 1/3 of the cumulative sum of factorials of primes, if 1 is used as the zeroth prime.
1
3, 43, 1723, 13307323
OFFSET
1,1
COMMENTS
No more primes. Starting with a(14) = (1! + ... + 43!)/3 the sum always has a factor of 47.
FORMULA
Defining prime(0)= 1: a(n) = (1/3)*Sum_{i=0..n}A000142(A000040(i+1)) iff in A000040. a(n) = (1/3)*Sum_{i=0..n}prime(i+1)! iff in A000040.
EXAMPLE
prime(0)! = 1! = 1; prime(1)! = 2! = 2.
a(1) = (1! + 2! + 3!)/3 = 9/3 = 3.
a(2) = (1! + 2! + 3! + 5!)/3 = 129/3 = 43.
a(3) = (1! + 2! + 3! + 5! + 7!)/3 = 5169/3 = 1723.
a(4) = (1! + 2! + 3! + 5! + 7! + 11!)/3 = 39921969/3 = 13307323.
MATHEMATICA
f[n_] := (1 + Plus @@ ((Prime@ Range@ n)!))/3; Select[f /@ Range@ 43, PrimeQ@# &] (* Robert G. Wilson v, Apr 30 2009 *)
CROSSREFS
Sequence in context: A274387 A300988 A136648 * A317343 A307248 A009720
KEYWORD
fini,full,nonn
AUTHOR
Jonathan Vos Post, Feb 07 2006
STATUS
approved