login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258438
Sum_{i=1..n} Sum_{j=1..n} (i OR j), where OR is the binary logical OR operator.
1
0, 1, 9, 24, 64, 117, 189, 280, 456, 657, 889, 1152, 1464, 1813, 2205, 2640, 3376, 4161, 5001, 5896, 6864, 7893, 8989, 10152, 11448, 12817, 14265, 15792, 17416, 19125, 20925, 22816, 25824, 28929, 32137, 35448, 38880, 42421, 46077, 49848, 53800
OFFSET
0,3
LINKS
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 42.
FORMULA
a(2^k) = (3*8^k+5*4^k)/4-2^k. - Giovanni Resta, May 30 2015
a(2^k-1) = 2^(k-2) * (4 - 7*2^k + 3*4^k). - Enrique Pérez Herrero, Jun 10 2015
a(n) = n^3 + n^2 - A224924(n). - Robert Israel, Jun 11 2015
MAPLE
A[0]:= 0:
for n from 1 to 100 do
A[n]:= A[n-1] + n + 2*add(Bits[Or](i, n), i=1..n-1)
od:
seq(A[i], i=0..100); # Robert Israel, Jun 11 2015
MATHEMATICA
a[n_] := Sum[BitOr[i, j], {i, 1, n}, {j, 1, n}]; Table[a[n], {n, 0, 40}]
PROG
(PARI) a(n) = sum(i=1, n, sum(j=1, n, bitor(i, j))); \\ Michel Marcus, May 31 2015
CROSSREFS
Cf. A224924.
Sequence in context: A079770 A079771 A297225 * A038626 A195970 A223372
KEYWORD
nonn,base
AUTHOR
STATUS
approved