OFFSET
0,2
FORMULA
Column k of W^3 (this triangle) = column 2 of W^(k+1), where W = P^3 and P = triangle A136220.
EXAMPLE
This triangle, W^3, begins:
1;
9, 1;
99, 18, 1;
1323, 306, 27, 1;
21036, 5643, 621, 36, 1;
390012, 115917, 14580, 1044, 45, 1;
8287041, 2657946, 366129, 29754, 1575, 54, 1;
198918840, 67708113, 9968067, 882318, 52785, 2214, 63, 1;
5329794042, 1903562412, 294952140, 27779046, 1804290, 85293, 2961, 72, 1;
where column 0 of W^3 = column 2 of W = triangle A136231.
PROG
(PARI) {T(n, k)=local(P=Mat(1), U=Mat(1), W=Mat(1), PShR); if(n>0, for(i=0, n, PShR=matrix(#P, #P, r, c, if(r>=c, if(r==c, 1, if(c==1, 0, P[r-1, c-1])))); U=P*PShR^2; U=matrix(#P+1, #P+1, r, c, if(r>=c, if(r<#P+1, U[r, c], if(c==1, (P^3)[ #P, 1], (P^(3*c-1))[r-c+1, 1])))); P=matrix(#U, #U, r, c, if(r>=c, if(r<#R, P[r, c], (U^c)[r-c+1, 1]))); W=P^3; )); (W^3)[n+1, k+1]}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Feb 07 2008
STATUS
approved