login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070918
Triangle of T(n,k) coefficients of polynomials with first n prime numbers as roots.
7
1, -2, 1, 6, -5, 1, -30, 31, -10, 1, 210, -247, 101, -17, 1, -2310, 2927, -1358, 288, -28, 1, 30030, -40361, 20581, -5102, 652, -41, 1, -510510, 716167, -390238, 107315, -16186, 1349, -58, 1, 9699690, -14117683, 8130689, -2429223, 414849, -41817, 2451, -77, 1
OFFSET
0,2
COMMENTS
Analog of the Stirling numbers of the first kind (A008275): The Stirling numbers (beginning with the 2nd row) are the coefficients of the polynomials having exactly the first n natural numbers as roots. This sequence (beginning with first row) consists of the coefficients of the polynomials having exactly the first n prime numbers as roots.
LINKS
FORMULA
From Alois P. Heinz, Aug 18 2019: (Start)
T(n,k) = [x^k] Product_{i=1..n} (x-prime(i)).
Sum_{k=0..n} |T(n,k)| = A054640(n).
|Sum_{k=0..n} T(n,k)| = A005867(n).
|Sum_{k=0..n} k * T(n,k)| = A078456(n). (End)
EXAMPLE
Row 4 of this sequence is 210, -247, 101, -17, 1 because (x-prime(1))(x-prime(2))(x-prime(3))(x-prime(4)) = (x-2)(x-3)(x-5)(x-7) = x^4 - 17*x^3 + 101*x^2 - 247*x + 210.
Triangle begins:
1;
-2, 1;
6, -5, 1;
-30, 31, -10, 1;
210, -247, 101, -17, 1;
-2310, 2927, -1358, 288, -28, 1;
30030, -40361, 20581, -5102, 652, -41, 1;
-510510, 716167, -390238, 107315, -16186, 1349, -58, 1;
...
MAPLE
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(mul(x-ithprime(i), i=1..n)):
seq(T(n), n=0..10); # Alois P. Heinz, Aug 18 2019
MATHEMATICA
Table[CoefficientList[Expand[Times@@(x-Prime[Range[n]])], x], {n, 0, 10}]// Flatten (* Harvey P. Dale, Feb 12 2020 *)
PROG
(PARI) p=1; for(k=1, 10, p=p*(x-prime(k)); for(n=0, k, print1(polcoeff(p, n), ", ")))
CROSSREFS
Cf. A008275 (Stirling numbers of first kind).
Cf. A005867 (absolute values of row sums).
Cf. A054640 (sum of absolute values of terms in rows).
Sequence in context: A143491 A308498 A295517 * A113381 A228175 A118980
KEYWORD
sign,tabl
AUTHOR
Rick L. Shepherd, May 20 2002
EXTENSIONS
First term T(0,0)=1 prepended by Alois P. Heinz, Aug 18 2019
STATUS
approved