login
A070921
a(n) = Card{ (x,y,z,u,v) | lcm(x,y,z,u,v)=n }.
5
1, 31, 31, 211, 31, 961, 31, 781, 211, 961, 31, 6541, 31, 961, 961, 2101, 31, 6541, 31, 6541, 961, 961, 31, 24211, 211, 961, 781, 6541, 31, 29791, 31, 4651, 961, 961, 961, 44521, 31, 961, 961, 24211, 31, 29791, 31, 6541, 6541, 961, 31, 65131, 211, 6541
OFFSET
1,2
COMMENTS
A048691(n) gives Card{ (x,y) | lcm(x,y)=n }.
LINKS
O. Bagdasar, On some functions involving the lcm and gcd of integer tuples, Scientific Publications of the State University of Novi Pazar, Appl. Maths. Inform. and Mech., Vol. 6, 2 (2014), 91-100.
FORMULA
a(n) = Sum_{d|n} A000005(d)^5*A008683(n/d).
Sum_{k>0} a(k)/k^s = (1/zeta(s))*Sum_{k>0} tau(k)^5/k^s.
Multiplicative with a(p^e) = (e+1)^5 - e^5. - Amiram Eldar, Sep 03 2023
MATHEMATICA
Join[{1}, Table[Product[(k + 1)^5 - k^5, {k, FactorInteger[n][[All, 2]]}], {n, 2, 68}]] (* Geoffrey Critzer, Jan 10 2015 *)
PROG
(PARI) for(n=1, 100, print1(sumdiv(n, d, numdiv(d)^5*moebius(n/d)), ", "))
(PARI) a(n) = vecprod(apply(x->(x+1)^5-x^5, factor(n)[, 2])); \\ Amiram Eldar, Sep 03 2023
CROSSREFS
Cf. A000005, A008683, A048691, A070919, A070920, A247517 (Mobius transform).
Sequence in context: A140718 A040931 A022365 * A369586 A369409 A165852
KEYWORD
mult,easy,nonn
AUTHOR
Benoit Cloitre, May 20 2002
STATUS
approved