login
A181405
Total number of n-digit numbers requiring 8 positive cubes in their representation as sum of cubes.
8
0, 3, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,2
COMMENTS
Arthur Wieferich proved that only 15 integers require eight cubes, cf. A018889.
A181354(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + a(n) + A171386(n) = A052268(n)
LINKS
Eric Weisstein's World of Mathematics, Waring's Problem.
FORMULA
a(n) = A181404(n) - A181404(n-1).
CROSSREFS
Sequence in context: A101710 A088799 A372101 * A354568 A072117 A162853
KEYWORD
nonn,base
AUTHOR
Martin Renner, Jan 28 2011
STATUS
approved