login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181407
a(n) = (n-4)*(n-3)*2^(n-2).
3
3, 3, 2, 0, 0, 16, 96, 384, 1280, 3840, 10752, 28672, 73728, 184320, 450560, 1081344, 2555904, 5963776, 13762560, 31457280, 71303168, 160432128, 358612992, 796917760, 1761607680, 3875536896, 8489271296, 18522046464, 40265318400, 87241523200, 188441690112
OFFSET
0,1
COMMENTS
Binomial transform of (3, 0, -1, followed by A005563).
The sequence and its successive differences are:
3, 3, 2, 0, 0, 16, 96, 384, a(n),
0, -1, -2, 0, 16, 80, 288, 896, A178987,
-1, -1, 2, 16, 64, 208, 608, 2688, -A127276,
0, 3, 14, 48, 144, 400, 1056, 2688, A176027,
3, 11, 34, 96, 256, 656, 1632, 3968, A084266(n+1)
8, 23, 62, 160, 400, 976, 2336, 5504,
15, 39, 98, 240, 576, 1360, 3168, 7296.
Division of the k-th column by abs(A174882(k)) gives
3, 3, 1, 0, 0, 1, 3, 3, 5, 15, 21, 14, A064038(n-3),
0, -1, -1, 0, 1, 5, 9, 7, 10, 27, 35, 22, A160050(n-3),
-1, -1, 1, 2, 4, 13, 19, 13, 17, 43, 53, 32, A176126,
0, 3, 7, 6, 9, 25, 33, 21, 26, 63, 75, 44, A178242,
3, 11, 17, 12, 16, 41, 51, 31, 37, 87, 101, 58,
8 23, 31, 20, 25, 61, 73, 43, 50, 115, 131, 74,
15, 39, 49, 30, 36, 85, 99, 57, 65, 147, 165, 92.
FORMULA
a(n) = 16*A001788(n-4).
a(n+1) - a(n) = A178987(n).
G.f.: (3 - 15*x + 20*x^2) / (1-2*x)^3. - R. J. Mathar, Jan 30 2011
E.g.f.: (x^2 - 3*x + 3)*exp(2*x). - G. C. Greubel, Feb 21 2019
MATHEMATICA
Table[(n-4)*(n-3)*2^(n-2), {n, 0, 40}] (* G. C. Greubel, Feb 21 2019 *)
PROG
(Magma) [(n-4)*(n-3)*2^(n-2): n in [0..40] ]; // Vincenzo Librandi, Feb 01 2011
(PARI) vector(40, n, n--; (n-4)*(n-3)*2^(n-2)) \\ G. C. Greubel, Feb 21 2019
(Sage) [(n-4)*(n-3)*2^(n-2) for n in (0..40)] # G. C. Greubel, Feb 21 2019
(GAP) List([0..40], n-> (n-4)*(n-3)*2^(n-2)); # G. C. Greubel, Feb 21 2019
CROSSREFS
Sequence in context: A117252 A332498 A378075 * A114187 A016037 A106449
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jan 28 2011
STATUS
approved