Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Nov 11 2024 22:28:51
%S 3,3,2,0,0,16,96,384,1280,3840,10752,28672,73728,184320,450560,
%T 1081344,2555904,5963776,13762560,31457280,71303168,160432128,
%U 358612992,796917760,1761607680,3875536896,8489271296,18522046464,40265318400,87241523200,188441690112
%N a(n) = (n-4)*(n-3)*2^(n-2).
%C Binomial transform of (3, 0, -1, followed by A005563).
%C The sequence and its successive differences are:
%C 3, 3, 2, 0, 0, 16, 96, 384, a(n),
%C 0, -1, -2, 0, 16, 80, 288, 896, A178987,
%C -1, -1, 2, 16, 64, 208, 608, 2688, -A127276,
%C 0, 3, 14, 48, 144, 400, 1056, 2688, A176027,
%C 3, 11, 34, 96, 256, 656, 1632, 3968, A084266(n+1)
%C 8, 23, 62, 160, 400, 976, 2336, 5504,
%C 15, 39, 98, 240, 576, 1360, 3168, 7296.
%C Division of the k-th column by abs(A174882(k)) gives
%C 3, 3, 1, 0, 0, 1, 3, 3, 5, 15, 21, 14, A064038(n-3),
%C 0, -1, -1, 0, 1, 5, 9, 7, 10, 27, 35, 22, A160050(n-3),
%C -1, -1, 1, 2, 4, 13, 19, 13, 17, 43, 53, 32, A176126,
%C 0, 3, 7, 6, 9, 25, 33, 21, 26, 63, 75, 44, A178242,
%C 3, 11, 17, 12, 16, 41, 51, 31, 37, 87, 101, 58,
%C 8 23, 31, 20, 25, 61, 73, 43, 50, 115, 131, 74,
%C 15, 39, 49, 30, 36, 85, 99, 57, 65, 147, 165, 92.
%C Columns are (or from) A005563, A142463, A056220, A002378, A000290, A001844, A058331, A002061, A002522, A097080, A093328, A014206.
%H G. C. Greubel, <a href="/A181407/b181407.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-12,8).
%F a(n) = 16*A001788(n-4).
%F a(n+1) - a(n) = A178987(n).
%F G.f.: (3 - 15*x + 20*x^2) / (1-2*x)^3. - _R. J. Mathar_, Jan 30 2011
%F E.g.f.: (x^2 - 3*x + 3)*exp(2*x). - _G. C. Greubel_, Feb 21 2019
%t Table[(n-4)*(n-3)*2^(n-2), {n,0,40}] (* _G. C. Greubel_, Feb 21 2019 *)
%o (Magma) [(n-4)*(n-3)*2^(n-2): n in [0..40] ]; // _Vincenzo Librandi_, Feb 01 2011
%o (PARI) vector(40, n, n--; (n-4)*(n-3)*2^(n-2)) \\ _G. C. Greubel_, Feb 21 2019
%o (Sage) [(n-4)*(n-3)*2^(n-2) for n in (0..40)] # _G. C. Greubel_, Feb 21 2019
%o (GAP) List([0..40], n-> (n-4)*(n-3)*2^(n-2)); # _G. C. Greubel_, Feb 21 2019
%Y Cf. A176027, A181318.
%K nonn,easy
%O 0,1
%A _Paul Curtz_, Jan 28 2011