login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379080
Expansion of (1/x) * Series_Reversion( x * (1/(1 + x) - x^2)^2 ).
1
1, 2, 7, 32, 163, 886, 5039, 29616, 178446, 1096356, 6842452, 43259122, 276462247, 1783114592, 11591769207, 75874998822, 499643588823, 3307746965238, 22001986381873, 146972401234478, 985535271867577, 6631547191254298, 44763982636889092, 303037237861086682
OFFSET
0,2
FORMULA
G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{k>=1} A379084(k) * x^k/k ).
(2) A(x) = ( (1 + x*A(x)) * (1 + x^2*A(x)^(5/2)) )^2.
(3) A(x) = B(x)^2 where B(x) is the g.f. of A200719.
a(n) = (1/(n+1)) * [x^n] 1/( 1/(1 + x) - x^2 )^(2*(n+1)).
a(n) = 2 * Sum_{k=0..floor(n/2)} binomial(2*n+k+2,k) * binomial(2*n+k+2,n-2*k)/(2*n+k+2) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+k+1,k) * binomial(2*n+k+2,n-2*k).
PROG
(PARI) a(n) = 2*sum(k=0, n\2, binomial(2*n+k+2, k)*binomial(2*n+k+2, n-2*k)/(2*n+k+2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 15 2024
STATUS
approved