OFFSET
0,2
FORMULA
G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{k>=1} A379085(k) * x^k/k ).
(2) A(x) = ( (1 + x*A(x)) * (1 + x^3*A(x)^(7/2)) )^2.
(3) A(x) = B(x)^2 where B(x) is the g.f. of A379089.
a(n) = (1/(n+1)) * [x^n] 1/( 1/(1 + x) - x^3 )^(2*(n+1)).
a(n) = 2 * Sum_{k=0..floor(n/3)} binomial(2*n+k+2,k) * binomial(2*n+k+2,n-3*k)/(2*n+k+2) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+k+1,k) * binomial(2*n+k+2,n-3*k).
PROG
(PARI) a(n) = 2*sum(k=0, n\3, binomial(2*n+k+2, k)*binomial(2*n+k+2, n-3*k)/(2*n+k+2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 15 2024
STATUS
approved