login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379085
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n+k-1,k) * binomial(2*n+k,n-3*k).
3
1, 2, 6, 26, 142, 802, 4434, 24222, 132686, 733076, 4081926, 22853052, 128427106, 723862856, 4090573570, 23170106086, 131515806574, 747875338152, 4259810283828, 24298797944956, 138787172202182, 793651842511512, 4543393775520936, 26035130683198684, 149325002408646002
OFFSET
0,2
FORMULA
a(n) = [x^n] 1/( 1/(1 + x) - x^3 )^(2*n).
a(n) == 0 (mod 2) for n>0.
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*n+k-1, k)*binomial(2*n+k, n-3*k));
CROSSREFS
Cf. A379089.
Sequence in context: A134094 A009575 A263687 * A180891 A224529 A171151
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Dec 15 2024
STATUS
approved