login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226995
Number of lattice paths from (0,0) to (n,n) consisting of steps U=(1,1), H=(1,0) and S=(0,1) such that the first step leaving the diagonal (if any) is an H step and the last step joining the diagonal (if any) is a S step.
3
1, 2, 6, 23, 103, 504, 2588, 13661, 73373, 398814, 2186818, 12072275, 67004451, 373532596, 2089994360, 11730304377, 66012996217, 372350924666, 2104523577534, 11916013288271, 67576932913951, 383781666337072, 2182362613988116, 12424357722805333
OFFSET
0,2
LINKS
FORMULA
G.f.: x/((x-1)^2*sqrt(x^2-6*x+1)) - 1/(x-1).
a(n) ~ (3+2*sqrt(2))^(n+1/2)/(2^(3+1/4)*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 27 2013
EXAMPLE
a(0) = 1: the empty path.
a(1) = 2: HS, U.
a(2) = 6: HHSS, HSHS, HSU, HUS, UHS, UU.
a(3) = 23: HHHSSS, HHSHSS, HHSSHS, HHSSU, HHSUS, HHUSS, HSHHSS, HSHSHS, HSHSU, HSHUS, HSSHHS, HSUHS, HSUU, HUHSS, HUSHS, HUSU, HUUS, UHHSS, UHSHS, UHSU, UHUS, UUHS, UUU.
MAPLE
a:= proc(n) option remember; `if`(n<4, [1, 2, 6, 23][n+1],
((8*n-11)*a(n-1) +(21-14*n)*a(n-2)
+(8*n-13)*a(n-3) -(n-2)*a(n-4))/ (n-1))
end:
seq(a(n), n=0..25);
MATHEMATICA
CoefficientList[Series[x/((x-1)^2*Sqrt[x^2-6*x+1]) - 1/(x-1), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 27 2013 *)
CROSSREFS
Cf. A001850 (unrestricted paths), A006318 (subdiagonal paths), A226994, A226996.
Sequence in context: A279573 A174193 A238639 * A301897 A374546 A022558
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 26 2013
STATUS
approved