The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212738 a(n) = (7^p - 6^p -  1)/(1806p) where p is the n-th prime. 1
 1, 43, 81271, 3570505, 7025726485, 314435374639, 639872336584027, 60775577624897675065, 2794429652350970000851, 276858360603194024261113585, 600808083611945729624598396925, 28083738921571587634894783049047, 61728002094732427074308383210511683 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,2 COMMENTS 7^p - 6^p - 1 is divisible by 1806p = 6*7*43*p where p prime > 3 (see the proof with the general case). The sequence is generalizable with the form a(n) = ((k^p - (k-1)^p - 1)) /(k*(k-1)*p*q) where p = prime(n), k integer such that q = k*(k-1) + 1 prime (q = A002383(n) with k = A055494(n)). k*(k-1)*p*q divides k^p - (k-1)^p - 1, proof : (1)   p divides k^p - (k-1)^p - 1 (Fermatâ€™s theorem) (2)   k*(k-1) divides k^p - (k-1)^p - 1 (3)   q = k*(k-1) + 1 divides k^p - (k-1)^p - 1. Suppose  k^p - (k-1)^p - 1 ==r (mod q). Then ((k-1)^p)*k^p - ((k-1)^p)*(k-1)^p - (k-1)^p ==r*(k-1)^p (mod q). But the first term is congruent to -1 (mod q), the second term is congruent to k^p (mod q) and the last term is congruent to (k-1)^p (mod q). We obtain r (mod q) = r*(k-1)^p (mod q) => r = 0. LINKS Andrew Howroyd, Table of n, a(n) for n = 3..100 Peter Vandendriessche and Hojoo Lee, Problems in elementary number theory, Problem A43. MAPLE with(numtheory): for n from 3 to 25 do:p:=ithprime(n):x:=(7^p - 6^p - 1)/(1806*p): printf(`%d, `, x):od: PROG (PARI) a(n)={my(p=prime(n)); (7^p - 6^p - 1)/(1806*p)} \\ Andrew Howroyd, Feb 25 2018 CROSSREFS Cf. A002383, A055494. Sequence in context: A262648 A185558 A155477 * A291993 A228546 A125828 Adjacent sequences:  A212735 A212736 A212737 * A212739 A212740 A212741 KEYWORD nonn AUTHOR Michel Lagneau, May 27 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 09:28 EST 2020. Contains 338833 sequences. (Running on oeis4.)