login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212738 a(n) = (7^p - 6^p -  1)/(1806p) where p is the n-th prime. 1
1, 43, 81271, 3570505, 7025726485, 314435374639, 639872336584027, 60775577624897675065, 2794429652350970000851, 276858360603194024261113585, 600808083611945729624598396925, 28083738921571587634894783049047, 61728002094732427074308383210511683 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,2

COMMENTS

7^p - 6^p - 1 is divisible by 1806p = 6*7*43*p where p prime > 3 (see the proof with the general case).

The sequence is generalizable with the form a(n) = ((k^p - (k-1)^p - 1)) /(k*(k-1)*p*q) where p = prime(n), k integer such that q = k*(k-1) + 1 prime (q = A002383(n) with k = A055494(n)).

k*(k-1)*p*q divides k^p - (k-1)^p - 1, proof :

(1)   p divides k^p - (k-1)^p - 1 (Fermat’s theorem)

(2)   k*(k-1) divides k^p - (k-1)^p - 1

(3)   q = k*(k-1) + 1 divides k^p - (k-1)^p - 1. Suppose  k^p - (k-1)^p - 1 ==r (mod q). Then ((k-1)^p)*k^p - ((k-1)^p)*(k-1)^p - (k-1)^p ==r*(k-1)^p (mod q). But the first term is congruent to -1 (mod q), the second term is congruent to k^p (mod q) and the last term is congruent to (k-1)^p (mod q). We obtain r (mod q) = r*(k-1)^p (mod q) => r = 0.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 3..100

Peter Vandendriessche and Hojoo Lee, Problems in elementary number theory, Problem A43.

MAPLE

with(numtheory): for n from 3 to 25 do:p:=ithprime(n):x:=(7^p - 6^p - 1)/(1806*p): printf(`%d, `, x):od:

PROG

(PARI) a(n)={my(p=prime(n)); (7^p - 6^p - 1)/(1806*p)} \\ Andrew Howroyd, Feb 25 2018

CROSSREFS

Cf. A002383, A055494.

Sequence in context: A262648 A185558 A155477 * A291993 A228546 A125828

Adjacent sequences:  A212735 A212736 A212737 * A212739 A212740 A212741

KEYWORD

nonn

AUTHOR

Michel Lagneau, May 27 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 09:28 EST 2020. Contains 338833 sequences. (Running on oeis4.)