login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059912
Triangle T(n,k) of orders of n degree irreducible polynomials over GF(2) listed in ascending order, k=1..A059499(n).
10
1, 3, 7, 5, 15, 31, 9, 21, 63, 127, 17, 51, 85, 255, 73, 511, 11, 33, 93, 341, 1023, 23, 89, 2047, 13, 35, 39, 45, 65, 91, 105, 117, 195, 273, 315, 455, 585, 819, 1365, 4095, 8191, 43, 129, 381, 5461, 16383, 151, 217, 1057, 4681, 32767, 257, 771, 1285, 3855
OFFSET
1,2
COMMENTS
A permutation of the odd positive numbers; namely, order each odd number d by the multiplicative order of 2 modulo d (in case of a tie, smaller d go first). - Jeppe Stig Nielsen, Feb 13 2020
FORMULA
T(n,k) = k-th smallest element of M(n) = {d : d|(2^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}. - Alois P. Heinz, Jun 01 2012
EXAMPLE
There are 18 (cf. A001037) irreducible polynomials of degree 7 over GF(2) which all have order 127.
Triangle T(n,k) begins:
1;
3;
7;
5, 15;
31;
9, 21, 63;
127;
17, 51, 85, 255;
73, 511;
11, 33, 93, 341, 1023;
...
MAPLE
with(numtheory):
M:= proc(n) option remember;
divisors(2^n-1) minus U(n-1)
end:
U:= proc(n) option remember;
`if`(n=0, {}, M(n) union U(n-1))
end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..20); # Alois P. Heinz, May 31 2012
MATHEMATICA
m[n_] := m[n] = Complement[ Divisors[2^n - 1], u[n - 1]]; u[0] = {}; u[n_] := u[n] = Union[ m[n], u[n - 1]]; t[n_, k_] := m[n][[k]]; Flatten[ Table[t[n, k], {n, 1, 16}, {k, 1, Length[ m[n] ]}]] (* Jean-François Alcover, Jun 14 2012, after Alois P. Heinz *)
PROG
(PARI) maxDegree=26; for(n=1, maxDegree, forstep(d=1, 2^n, 2, znorder(Mod(2, d))==n&&print1(d, ", "))) \\ inefficient, Jeppe Stig Nielsen, Feb 13 2020
CROSSREFS
Column k=1 of A212737.
Column k=1 gives: A212953.
Last elements of rows give: A000225.
Cf. A108974.
Sequence in context: A369277 A324821 A345401 * A354008 A115765 A282598
KEYWORD
easy,nonn,look,tabf
AUTHOR
Vladeta Jovovic, Feb 09 2001
STATUS
approved