OFFSET
1,1
COMMENTS
Or, primitive prime divisors of the Mersenne numbers 2^n-1 (see A000225) in their order of occurrence.
Of course the Mersenne primes 2^p-1 (cf. A000043) appear in this sequence.
If all odd positive numbers, not just the odd primes, are sorted in this way, the result is A059912. - Jeppe Stig Nielsen, Feb 13 2020
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..4275
G. Everest et al., Primes generated by recurrence sequences, Amer. Math. Monthly, 114 (No. 5, 2007), 417-431.
Jeppe Stig Nielsen, A108974 arranged as an irregular array.
K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math., 3 (1892), 265-284.
EXAMPLE
The order of 2 modulo 3 is 2 and the order of 2 modulo 7 is 3. So 3 comes before 7.
MATHEMATICA
a = 1; DeleteDuplicates[Flatten[#[[All, 1]] & /@ FactorInteger[Table[a = 2 a + 1, {i, 1, 30}]]]] (* Horst H. Manninger, Mar 20 2021 *)
PROG
(PARI) do(n)=my(v=List(), P=1, g, t, f); for(k=2, n, t=2^k-1; g=P; while((g=gcd(g, t))>1, t/=g); f=factor(t)[, 1]; for(i=1, #f, listput(v, f[i])); P*=t); Vec(v) \\ Charles R Greathouse IV, Sep 23 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Douglas Stones (dssto1(AT)student.monash.edu.au), Jul 27 2005
EXTENSIONS
More terms from Martin Fuller, Sep 25 2006
STATUS
approved