login
A354008
Numerators of Cesàro means sequence of A114112.
3
1, 3, 7, 5, 16, 7, 29, 9, 46, 11, 67, 13, 92, 15, 121, 17, 154, 19, 191, 21, 232, 23, 277, 25, 326, 27, 379, 29, 436, 31, 497, 33, 562, 35, 631, 37, 704, 39, 781, 41, 862, 43, 947, 45, 1036, 47, 1129, 49, 1226, 51, 1327, 53, 1432, 55, 1541, 57, 1654, 59, 1771, 61, 1892, 63, 2017, 65
OFFSET
1,2
COMMENTS
This sequence lists the numerators of c(n) = (Sum_{k=1..n} A114112(k)) / n. The corresponding denominator is A141310(n-1) (see Example section).
When a sequence u(n) is increasing, then Cesàro means sequence c(n) = (u(1)+...+u(n))/n is also increasing, but the converse is false.
A114112 is such a counterexample.
Proof: A114112 is clearly not increasing; now, the successive arithmetic means c(n) of the first specific terms of the sequence are 1/1, 3/2, 7/3, 10/4, 16/5, 21/6, 29/7, ... so, if m >= 1, c(2m) = (2m+1)/2 and c(2m+1) = m+1 + 1/(2m+1), c(1) = 1. We get c(n) = a(n) / A141310(n-1) for n >= 1.
We have c(2m+1) - c(2m) = 1/(2m+1) + 1/2 > 0 and c(2m+2) - c(2m+1) = (2m-1) / (4m+2) > 0 when m >= 1; hence for m >= 1, c(2m) < c(2m+1) < c(2m+2), and also c(1) = 1 < c(2) = 3/2; QED.
REFERENCES
J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, Exercice 10, pp. 14-16.
LINKS
ProofWiki, Cesàro mean.
Wikipedia, Ernesto Cesàro.
Wikipédia, Lemme de Cesàro (in French).
FORMULA
a(1) = 1, then for m >= 1: a(2m+1) = A130883(m+1) and a(2m) = A005408(m) = 2m+1.
G.f.: x*(1 + 3*x + 4*x^2 - 4*x^3 - 2*x^4 + x^5 + x^6)/(1 - x^2)^3. - Stefano Spezia, May 15 2022
EXAMPLE
Table with the first few terms:
Indices n : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
A114112(n) : 1, 2, 4, 3, 6, 5, 8, 7, 10, 9, ...
Partial sums : 1, 3, 7, 10, 16, 21, 29, 36, 46, 55, ...
Cesàro means c(n) : 1, 3/2, 7/3, 5/2, 16/5, 7/2, 29/7, 9/2, 46/9, 11/2, ...
Numerator a(n) : 1, 3, 7, 5, 16, 7, 29, 9, 46, 11, ...
Denominator A141310(n-1): 1, 2, 3, 2, 5, 2, 7, 2, 9, 2, ...
MATHEMATICA
s[1] = 1; s[2] = 2; s[n_] := If[OddQ[n], n + 1, n - 1]; m = 100; Numerator[Accumulate[Array[s, m]]/Range[m]] (* Amiram Eldar, May 15 2022 *)
PROG
(PARI) f(n) = if (n<=2, n, if (n%2, n+1, n-1)); \\ A114112
a(n) = numerator(sum(k=1, n, f(k))/n); \\ Michel Marcus, May 16 2022
(Python)
from math import gcd
def A354008(n): return 1 if n == 1 else (k:= (m:=n//2)*(n+1) + (n+1-m)*(n-2*m))//gcd(k, n) # Chai Wah Wu, May 24 2022
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Bernard Schott, May 13 2022
STATUS
approved