OFFSET
0,2
COMMENTS
The old definition of this sequence was "Generalized polygonal numbers".
Row T(5,n) of A080853.
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]=5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 3, a(n-1)=coeff(charpoly(A,x),x^(n-2)). - Milan Janjic, Jan 27 2010
LINKS
M. Janjic, Hessenberg Matrices and Integer Sequences, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.8.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: (1+3*x+21*x^2)/(1-x)^3
a(n) = 25*n + a(n-1) - 20 with n > 0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
From Elmo R. Oliveira, Oct 25 2024: (Start)
E.g.f.: exp(x)*(1 + 5*x + 25*x^2/2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MATHEMATICA
Table[(25n^2-15n+2)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 6, 36}, 50] (* Harvey P. Dale, Aug 14 2018 *)
PROG
(PARI) a(n)=(25*n^2-15*n+2)/2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Feb 23 2003
EXTENSIONS
Definition replaced with the closed form by Bruno Berselli, Jan 16 2013
STATUS
approved