login
A207559
Number of n X 3 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 1 1 and 1 1 0 vertically.
2
6, 36, 92, 221, 618, 1690, 4861, 13900, 40452, 117717, 345002, 1012682, 2983173, 8803252, 26036140, 77123437, 228815946, 679742490, 2021736365, 6019369820, 17938267476, 53500929061, 159681492682, 476893979146, 1425053001333
OFFSET
1,1
COMMENTS
Column 3 of A207564.
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - 6*a(n-2) - 21*a(n-3) + 36*a(n-4) + 12*a(n-5) - 39*a(n-6) + 6*a(n-7) + 10*a(n-8) - 3*a(n-9) for n>10.
Empirical g.f.: x*(6 - 88*x^2 + 11*x^3 + 384*x^4 - 128*x^5 - 440*x^6 + 160*x^7 + 120*x^8 - 45*x^9) / ((1 - x)*(1 + x)*(1 - 3*x)*(1 - 3*x + x^2)*(1 + x - x^2)*(1 - x - x^2)). - Colin Barker, Mar 05 2018
EXAMPLE
Some solutions for n=4:
..0..0..0....1..0..0....0..1..1....1..1..1....1..1..0....0..1..1....0..0..0
..1..1..0....0..0..0....1..0..0....1..1..0....0..0..0....1..1..1....1..1..1
..0..0..0....1..0..1....0..0..0....1..1..0....1..0..1....0..1..1....0..0..0
..0..1..1....0..0..0....0..1..1....1..1..0....0..0..0....1..1..1....0..0..0
CROSSREFS
Cf. A207564.
Sequence in context: A213189 A080857 A108158 * A207414 A192278 A207106
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 18 2012
STATUS
approved