OFFSET
0,3
COMMENTS
Compare g.f. to: Sum_{n>=0} 1/(1+x)^(n^2) * Product_{k=1..n} ((1+x)^(2*k-1) - 1), which is the g.f. of A179525.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..135
Hsien-Kuei Hwang, and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], p. 36, 2019.
FORMULA
Given A(x) is the g.f. of this sequence, note that:
1 + x*A(x) = Sum_{n>=0} 1/(1+x)^(n^2+n) * Product_{k=1..n} ((1+x)^(2*k-1) - 1).
a(n) ~ 2*sqrt(6) * 12^(n+1) * n^(n+1) / (exp(n+Pi^2/24) * Pi^(2*n+3)). - Vaclav Kotesovec, May 07 2014
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 64*x^4 + 420*x^5 + 3276*x^6 +...
such that, by definition,
A(x) = 1 + ((1+x)-1) + ((1+x)-1)*((1+x)^3-1)/(1+x)^2 + ((1+x)-1)*((1+x)^3-1)*((1+x)^5-1)/(1+x)^6 + ((1+x)-1)*((1+x)^3-1)*((1+x)^5-1)*((1+x)^7-1)/(1+x)^20 +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, prod(k=1, m, (1+x)^(2*k-1)-1)/(1+x+x*O(x^n))^(m^2-m) ), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 18 2012
STATUS
approved