login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201720
The total number of components in (A011800) of all labeled forests on n nodes whose components are all paths.
2
0, 1, 3, 12, 64, 420, 3246, 28798, 288072, 3205044, 39234340, 523821936, 7572221328, 117792884872, 1961516974704, 34807390821960, 655594811020096, 13060711726818768, 274358217793164912, 6060159633360214144, 140404595387426964480
OFFSET
0,3
FORMULA
E.g.f.: x*(2-x)*exp[x*(2-x)/(2-2x)]/(2-2x). - R. J. Mathar, Jun 27 2022
D-finite with recurrence 6*(n+1)*a(n) +2*(-6*n^2-19*n+35)*a(n-1) +2*(3*n^3+26*n^2-102*n+75)*a(n-2) -(n-2)*(29*n^2-102*n+85)*a(n-3) +(13*n-15)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Jun 27 2022
MAPLE
A201720 := proc(n)
g := (2*x-x^2)*exp((2*x-x^2)/(2-2*x))/(2-2*x) ;
coeftayl(g, x=0, n) ;
%*n! ;
end proc:
seq(A201720(n), n=0..30) ; # R. J. Mathar, Jun 27 2022
MATHEMATICA
D[Range[0, 20]! CoefficientList[ Series[Exp[y (2 x - x^2)/(2 - 2 x)], {x, 0, 20}], x], y] /. y -> 1
CROSSREFS
Cf. A011800.
Sequence in context: A308204 A307724 A029851 * A207557 A235129 A222033
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Dec 04 2011
STATUS
approved