The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060820 (2*n-1)^2 + (2*n)^2. 3
 5, 25, 61, 113, 181, 265, 365, 481, 613, 761, 925, 1105, 1301, 1513, 1741, 1985, 2245, 2521, 2813, 3121, 3445, 3785, 4141, 4513, 4901, 5305, 5725, 6161, 6613, 7081, 7565, 8065, 8581, 9113, 9661, 10225, 10805, 11401, 12013, 12641, 13285, 13945, 14621, 15313 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Marilyn vos Savant and Leonore Fleischer, Brain Building in Just 12 Weeks, Bantam Books, New York, NY, 1991, pp. 104-105, 119. LINKS Harry J. Smith, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). G.f.: x*(5+10*x+x^2)/(1-x)^3. - Colin Barker, Apr 22 2012 EXAMPLE a(1)=5 because 1^2+2^2=5. a(2)=25 because 3^2+4^2=25. MATHEMATICA Table[(2*n - 1)^2 + (2*n)^2, {n, 300}] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *) LinearRecurrence[{3, -3, 1}, {5, 25, 61}, 60] (* Harvey P. Dale, Oct 13 2020 *) PROG (PARI) for (n=1, 1000, write("b060820.txt", n, " ", (2*n - 1)^2 + (2*n)^2); ) \\ Harry J. Smith, Jul 12 2009 CROSSREFS Sequence in context: A228169 A152734 A080856 * A182211 A146404 A323187 Adjacent sequences: A060817 A060818 A060819 * A060821 A060822 A060823 KEYWORD easy,nonn AUTHOR Jason Earls, May 05 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 08:56 EST 2022. Contains 358466 sequences. (Running on oeis4.)