login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001947 a(n) = Lucas(5*n+2).
(Formerly M3120 N1265)
1
3, 29, 322, 3571, 39603, 439204, 4870847, 54018521, 599074578, 6643838879, 73681302247, 817138163596, 9062201101803, 100501350283429, 1114577054219522, 12360848946698171, 137083915467899403, 1520283919093591604, 16860207025497407047, 186982561199565069121 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Related to Bernoulli numbers.
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 141.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Tanya Khovanova, Recursive Sequences
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: (3 - 4*x) / (1 - 11*x - x^2). - Corrected by Colin Barker, Apr 22 2017
a(n) = Lucas(5*n+2). - Thomas Baruchel, Nov 26 2003
From Colin Barker, Apr 22 2017: (Start)
a(n) = (((11-5*sqrt(5))/2)^n*(-5+3*sqrt(5)) + (5+3*sqrt(5))*((11+5*sqrt(5))/2)^n) / (2*sqrt(5)).
a(n) = 11*a(n-1) + a(n-2) for n>1.
(End)
MAPLE
A001947:=(-3+4*z)/(-1+11*z+z**2); # Conjectured by Simon Plouffe in his 1992 dissertation.
MATHEMATICA
LucasL[5*Range[0, 20]+2] (* Harvey P. Dale, Jan 18 2012 *)
PROG
(Magma) [ Lucas(5*n +2): n in [0..120]]; // Vincenzo Librandi, Apr 16 2011
(PARI) Vec((3 - 4*x) / (1 - 11*x - x^2) + O(x^20)) \\ Colin Barker, Apr 22 2017
CROSSREFS
Sequence in context: A155651 A268020 A278934 * A323569 A049038 A091646
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 20:16 EDT 2024. Contains 375910 sequences. (Running on oeis4.)