|
|
A001947
|
|
a(n) = Lucas(5*n+2).
(Formerly M3120 N1265)
|
|
1
|
|
|
3, 29, 322, 3571, 39603, 439204, 4870847, 54018521, 599074578, 6643838879, 73681302247, 817138163596, 9062201101803, 100501350283429, 1114577054219522, 12360848946698171, 137083915467899403, 1520283919093591604, 16860207025497407047, 186982561199565069121
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Related to Bernoulli numbers.
|
|
REFERENCES
|
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 141.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (3 - 4*x) / (1 - 11*x - x^2). - Corrected by Colin Barker, Apr 22 2017
a(n) = (((11-5*sqrt(5))/2)^n*(-5+3*sqrt(5)) + (5+3*sqrt(5))*((11+5*sqrt(5))/2)^n) / (2*sqrt(5)).
a(n) = 11*a(n-1) + a(n-2) for n>1.
(End)
|
|
MAPLE
|
|
|
MATHEMATICA
|
|
|
PROG
|
(PARI) Vec((3 - 4*x) / (1 - 11*x - x^2) + O(x^20)) \\ Colin Barker, Apr 22 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|