Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1127 N0430 #83 Apr 13 2022 13:25:16
%S 0,0,0,0,0,1,2,4,8,16,32,63,124,244,480,944,1856,3649,7174,14104,
%T 27728,54512,107168,210687,414200,814296,1600864,3147216,6187264,
%U 12163841,23913482,47012668,92424472,181701728,357216192,702268543,1380623604,2714234540
%N Solutions of a fifth-order probability difference equation.
%C This sequence is the case r = 5 in the solution to an r-th order probability difference equation that can be found in Eqs. (4) and (3) on p. 356 of Dunkel (1925). (Equation (3) follows equation (4) in the paper!) For r = 2, we get a shifted version of A000071. For r = 3, we get a shifted version of A008937. For r = 4, we get a shifted version of A107066. For r = 6, we get a shifted version of A172316. See also the table in A172119. - _Petros Hadjicostas_, Jun 15 2019
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vincenzo Librandi, <a href="/A001949/b001949.txt">Table of n, a(n) for n = 0..1000</a>
%H O. Dunkel, <a href="http://www.jstor.org/stable/2298801">Solutions of a probability difference equation</a>, Amer. Math. Monthly, 32 (1925), 354-370; see pp. 356 and 369.
%H T. Langley, J. Liese, and J. Remmel, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Langley/langley2.html">Generating Functions for Wilf Equivalence Under Generalized Factor Order</a>, J. Int. Seq. 14 (2011), Article #11.4.2.
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,0,0,0,-1)
%F For n >= 6, a(n+1) = 2*a(n) - a(n-5).
%F G.f.: x^5 / ( (x-1)*(x^5 + x^4 + x^3 + x^2 + x - 1) ).
%F a(n) = Sum_{k=1..n-4} Sum_{j=0..floor((n-k-4)/5)} (-1)^j*binomial(n-5*j-5, k-1)*binomial(n-k-5*j-4, j). - _Vladimir Kruchinin_, Oct 19 2011
%F 4*a(n) = A000322(n+1) - 1. - _R. J. Mathar_, Aug 16 2017
%F From _Petros Hadjicostas_, Jun 15 2019: (Start)
%F a(n) = 1 + a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) for n >= 5. (See Eq. (4) and the Theorem with r = 5 on p. 356 of Dunkel (1925).)
%F a(n) = T(n - 5, 5) for n >= 5, where T(n, k) = Sum_{j = 0..floor(n/(k+1))} (-1)^j * binomial(n - k*j, n - (k+1)*j) * 2^(n - (k+1)*j) for 0 <= k <= n. This is _Richard Choulet_'s formula in A172119.
%F (End)
%p A001949:=1/(z-1)/(z**5+z**4+z**3+z**2+z-1); # _Simon Plouffe_ in his 1992 dissertation
%t t={0,0,0,0,0};Do[AppendTo[t,t[[-5]]+t[[-4]]+t[[-3]]+t[[-2]]+t[[-1]]+1],{n,40}];t (* _Vladimir Joseph Stephan Orlovsky_, Jan 21 2012 *)
%t LinearRecurrence[{2,0,0,0,0,-1},{0,0,0,0,0,1},40] (* _Harvey P. Dale_, Jan 17 2015 *)
%o (Maxima)
%o a(n):=sum(sum((-1)^j*binomial(n-5*j-5,k-1)*binomial(n-k-5*j-4,j),j,0,(n-k-4)/5),k,1,n-4); /* _Vladimir Kruchinin_, Oct 19 2011 */
%o (PARI) x='x+O('x^99); concat(vector(5), Vec(x^5/((x-1)*(x^5+x^4+x^3+x^2+x-1)))) \\ _Altug Alkan_, Oct 04 2017
%Y Column k = 1 of A141020 (with a different offset) and second main diagonal of A141021 (with no zeros).
%Y Column k = 5 of A172119.
%K nonn,easy
%O 0,7
%A _N. J. A. Sloane_
%E Name edited by _Petros Hadjicostas_, Jun 15 2019